Skip to main content
Log in

Bondi-Metzner-Sachs Symmetry, Holography on Null-surfaces and Area Proportionality of “Light-slice” Entropy

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It is shown that certain kinds of behavior, which hitherto were expected to be characteristic for classical gravity and quantum field theory in curved spacetime, as the infinite dimensional Bondi-Metzner-Sachs symmetry, holography on event horizons and an area proportionality of entropy, have in fact an unnoticed presence in Minkowski QFT.

This casts new light on the fundamental question whether the volume proportionality of heat bath entropy and the (logarithmically corrected) dimensionless area law obeyed by localization-induced thermal behavior are different geometric parametrizations which share a common primordial algebraic origin. Strong arguments are presented that these two different thermal manifestations can be directly related, this is in fact the main aim of this paper.

It will be demonstrated that QFT beyond the Lagrangian quantization setting receives crucial new impulses from holography onto horizons.

The present paper is part of a project aimed at elucidating the enormous physical range of “modular localization”. The latter does not only extend from standard Hamiltonian heat bath thermal states to thermal aspects of causal- or event-horizons addressed in this paper. It also includes the recent understanding of the crossing property of formfactors whose intriguing similarity with thermal properties was, although sometimes noticed, only sufficiently understood in the modular setting (Schroer in arXiv:0905.4006 (2009)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bisognano, J.J., Wichmann, E.H.: J. Math. Phys. 17, 30 (1976)

    Article  MathSciNet  Google Scholar 

  2. Schroer, B.: Localization and the interface between quantum mechanics, quantum field theory and quantum gravity I (the two antagonistic localizations and their asymptotic compatibility), Stud. Hist. Philos. Phys. B 41, 104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Schroer, B.: Localization and the interface between quantum mechanics, quantum field theory and quantum gravity II (The search of the interface between QFT and QG), Stud. Hist. Philos. Mod. Phys. (2010, to appear). arXiv:0912.2886

  4. Schroer, B.: Class. Quantum Gravity 24, 4239 (2007) and preceding articles by the same author

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Sewell, G.L.: Ann. Phys. 141, 201 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  6. Summers, S.J., Verch, R.: Lett. Math. Phys. 37, 145 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Guido, D., Longo, R., Roberts, J.E., Verch, R.: Rev. Math. Phys. 13, 125 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hawking, S.W.: Commun. Math. Phys. 43, 19 (1975)

    Article  MathSciNet  Google Scholar 

  9. Haag, R.: Local Quantum Physics. Springer, Berlin (1996)

    MATH  Google Scholar 

  10. Takesaki, M.: Tomita’s Theory of Modular Hilbert Algebras and Its Applications. Lecture Notes in Mathematics, vol. 128. Springer, Berlin (1970)

    MATH  Google Scholar 

  11. ’t Hooft, G.: Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026

  12. Schroer, B.: Jorge A. Swieca’s contributions to quantum field theory in the 60s and 70s and their relevance in present research. Eur. Phys. J. H (to be published). arXiv:0712.0371

  13. Bousso, R.: Rev. Mod. Phys. 74, 825 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Sachs, R.: Phys. Rev. 128, 2851 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  15. Unruh, W.G.: Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  16. Driessler, W.: Acta Phys. Austr. 46, 63 (1977)

    MathSciNet  Google Scholar 

  17. Brunetti, R., Fredenhagen, K., Verch, R.: Commun. Math. Phys. 237, 31 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  18. Glaser, V., Lehmann, H., Zimmermann, W.: Nuovo Cimento 6, 1122 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schroer, B.: A critical look at 50 years particle theory from the perspective of the crossing property. arXiv:0905.4006

  20. Babujian, H., Karowski, M.: The “Bootstrap program” for integrable quantum field theories in 1+1 Dim. arXiv:hep-th/0110261

  21. Schroer, B.: J. Phys. A 35, 9165 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Schroer, B.: Int. J. Math. Phys. A 18, 1671 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Schroer, B.: Int. J. Mod. Phys. A 19S2, 348 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  24. Schroer, B.: Nucl. Phys. B 499, 547 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Schroer, B.: Ann. Phys. 275, 190 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Lechner, G.: Commun. Math. Phys. 277, 821 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Babujian, H., Karowski, M.: Int. J. Mod. Phys. A 19S2, 34 (2004)

    Article  MathSciNet  Google Scholar 

  28. Zamolodchikov, A.B., Zamolodchikov, Al.: Ann. Phys. 120, 253 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  29. Duetsch, M., Rehren, K.-H.: Henri Poincaré 4, 613 (2003). arXiv:math-ph/0209035

    Article  MATH  Google Scholar 

  30. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  31. Bischoff, M., Meise, D., Rehren, K.-H., Wagner, I.: Conformal quantum field theory in various dimensions. Bulg. J. Phys. 36, 170 (2009)

    MATH  MathSciNet  Google Scholar 

  32. Dappiaggi, C.: Free field theory at null infinity and white noise calculus: a BMS invariant dynamical system. arXiv:math-ph/0607055

  33. Brunetti, R., Guido, D., Longo, R.: Rev. Math. Phys. 14, 759 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Fassarella, L., Schroer, B.: J. Phys. A 35, 9123 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Mund, J., Schroer, B., Yngvason, J.: Commun. Math. Phys. 268, 621 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Dappiaggi, C.: Phys. Lett. B 615, 291 (2005)

    MathSciNet  ADS  Google Scholar 

  37. Newton, T.D., Wigner, E.P.: Rev. Mod. Phys. 21, 400 (1949)

    Article  MATH  ADS  Google Scholar 

  38. Bombelli, L., Kaul, R.K., Lee, J., Sorkin, R.: Phys. Rev. D 34, 373 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Doplicher, S., Longo, R.: Invent. Math. 75, 493 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Requardt, M.: Commun. Math. Phys. 50, 256 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  41. Hartle, J., Hawking, S.W.: Phys. Rev. D 28, 2960 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  42. Cardy, J.: Entanglement entropy in extended quantum systems. arXiv:0708.2978

  43. Longo, R., Xu, F.: Commun. Math. Phys. 251, 321 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Borchers, H.-J., Yngvason, J.: J. Math. Phys. 40, 601 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Schroer, B., Wiesbrock, H.-W.: Rev. Math. Phys. 12, 461 (2000). arXiv:hep-th/9901031

    Article  MATH  MathSciNet  Google Scholar 

  46. Jacobson, T.: Phys. Rev. Lett. 75, 1260 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Haag, R., Swieca, J.A.: Commun. Math. Phys. 1, 308 (1965)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. Buchholz, D., Wichmann, E.H.: Commun. Math. Phys. 106, 321 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. Dappiaggi, C., Moretti, V., Pinamonti, N.: Rev. Math. Phys. 18, 349 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  50. Moretti, V.: Commun. Math. Phys. 268, 727 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. Moretti, V.: Commun. Math. Phys. 279, 31 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. Brunetti, R., Fredenhagen, K., Verch, R.: Commun. Math. Phys. 237, 31 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  53. Hollands, S., Wald, R.E.: Gen. Relativ. Gravit. 36, 2595 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Schroer.

Additional information

Dedicated to Detlev Buchholz on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroer, B. Bondi-Metzner-Sachs Symmetry, Holography on Null-surfaces and Area Proportionality of “Light-slice” Entropy. Found Phys 41, 204–241 (2011). https://doi.org/10.1007/s10701-010-9494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9494-3

Keywords

Navigation