Skip to main content
Log in

Construction of Quantum Field Theories with Factorizing S-Matrices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A new approach to the construction of interacting quantum field theories on two-dimensional Minkowski space is discussed. In this program, models are obtained from a prescribed factorizing S-matrix in two steps. At first, quantum fields which are localized in infinitely extended, wedge-shaped regions of Minkowski space are constructed explicitly. In the second step, local observables are analyzed with operator-algebraic techniques, in particular by using the modular nuclearity condition of Buchholz, d’Antoni and Longo.

Besides a model-independent result regarding the Reeh–Schlieder property of the vacuum in this framework, an infinite class of quantum field theoretic models with non-trivial interaction is constructed. This construction completes a program initiated by Schroer in a large family of theories, a particular example being the Sinh-Gordon model. The crucial problem of establishing the existence of local observables in these models is solved by verifying the modular nuclearity condition, which here amounts to a condition on analytic properties of form factors of observables localized in wedge regions.

It is shown that the constructed models solve the inverse scattering problem for the considered class of S-matrices. Moreover, a proof of asymptotic completeness is obtained by explicitly computing total sets of scattering states. The structure of these collision states is found to be in agreement with the heuristic formulae underlying the Zamolodchikov-Faddeev algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdalla E., Abdalla M.C.B. and Rothe D. (1991). Non-perturbative Methods in Two-Dimensional Quantum Field Theory. World Scientific Publishing, Singapore

    Google Scholar 

  2. Araki, H.: Mathematical Theory of Quantum Fields. Int. Series of Monographs on Physics 101, Oxford: Oxford University Press, 1999

  3. Arinshtein A.E., Fateev V.A. and Zamolodchikov A.B. (1979). Quantum S-matrix of the (1 + 1)-dimensional Toda chain. Phys. Lett. B 87: 389–392

    ADS  Google Scholar 

  4. Babujian H. and Karowski M. (2002). Exact form factors in integrable quantum field theories: the sine-Gordon model (II). Nucl. Phys. B 620: 407–455

    Article  ADS  MathSciNet  Google Scholar 

  5. Babujian H. and Karowski M. (2003). Exact form factors for the scaling ZN-Ising and the affine AN-1-Toda quantum field theories. Phys. Lett. B 575: 144–150

    ADS  MathSciNet  Google Scholar 

  6. Babujian H. and Karowski M. (2004). Towards the construction of Wightman functions of integrable quantum field theories. Int. J. Mod. Phys. A 19S2: 34–49

    MathSciNet  Google Scholar 

  7. Balog, J., Weisz, P.: Construction and clustering properties of the 2-d non-linear sigma-model form factors: O(3), O(4), large n examples. http://arxiv.org/list/hepth/0701202, 2007

  8. Bisognano J.J. and Wichmann E.H. (1975). On the Duality Condition for a Hermitian Scalar Field. J. Math. Phys. 16: 985–1007

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Bisognano J.J. and Wichmann E.H. (1976). On the Duality Condition for Quantum Fields. J. Math. Phys. 17: 303–321

    Article  ADS  MathSciNet  Google Scholar 

  10. Bochner S. and Martin W.T. (1948). Several Complex Variables. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  11. Borchers H.-J. (1992). The CPT theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143: 315–332

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Borchers H.-J. (1998). Half–sided Translations and the Type of von Neumann Algebras. Lett. Math. Phys. 44: 283–290

    Article  MATH  MathSciNet  Google Scholar 

  13. Borchers H.-J. (2000). On revolutionizing quantum field theory with Tomita’s modular theory. J. Math. Phys. 41: 3604–3673

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Borchers H.-J., Buchholz D. and Schroer B. (2001). Polarization-free generators and the S-matrix. Commun. Math. Phys. 219: 125–140

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Buchholz D., D’Antoni C. and Longo R. (1990). Nuclear Maps and Modular Structures. 1. General Properties. J. Funct. Anal. 88: 233–250

    Article  MATH  MathSciNet  Google Scholar 

  16. Buchholz D., D’Antoni C. and Longo R. (1990). Nuclear Maps and Modular Structures. 2. Applications to Quantum Field Theory. Commun. Math. Phys. 129: 115–138

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Buchholz D. and Lechner G. (2004). Modular nuclearity and localization. Ann. H. Poincaré 5: 1065–1080

    Article  MATH  MathSciNet  Google Scholar 

  18. Buchholz D. and Summers S.J. (2004). Stable quantum systems in anti-de Sitter space: Causality, independence and spectral properties. J. Math. Phys. 45: 4810–4831

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Buchholz, D., Summers, S.J.: Scattering in Relativistic Quantum Field Theory: Fundamental Concepts and Tools. http://arxiv.org/list/math-ph/0509047, 2005

  20. Buchholz, D., Summers, S.J.: String– and Brane–Localized Causal Fields in a Strongly Nonlocal Model. http://arxiv.org/list/math-ph/0512060v2, 2005

  21. Buchholz D. and Wichmann E.H. (1986). Causal Independence and the Energy Level Density of States in Local Quantum Field Theory. Commun. Math. Phys. 106: 321–344

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Connes A. (1973). Une classification des facteurs de type III. Ann. Scient. Éc. Norm. Sup. 6: 133–252

    MATH  MathSciNet  Google Scholar 

  23. D’Antoni C. and Longo R. (1983). Interpolation by type I factors and the flip automorphism. J. Funct. Anal. 51: 361–371

    Article  MATH  MathSciNet  Google Scholar 

  24. Doplicher S. and Longo R. (1984). Standard and split inclusions of von Neumann algebras. Invent. Math. 75: 493–536

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Dorey, P.: Exact S-matrices. http://arxiv.org/list/hepth/9810026, 1998

  26. Driessler W. (1975). Comments on Lightlike Translations and Applications in Relativistic Quantum Field Theory. Commun. Math. Phys. 44: 133–141

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Eden R.J., Landshoff P.V., Olive D.I. and Polkinghorne J.C. (1966). The Analytic S-matrix. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  28. Epstein H. (1960). Generalization of the Edge-of-the-Wedge Theorem. J. Math. Phys. 1: 524–531

    Article  MATH  ADS  Google Scholar 

  29. Epstein, H.: Some Analytic Properties of Scattering Amplitudes in Quantum Field Theory. In: Brandeis University Summer Institute in Theoretical Physics 1965, Axiomatic Field Theory Vol. 1, M. Chretien, S. Deser, eds., New York: Gordon and Breach, 1966

  30. Fring A., Mussardo G. and Simonetti P. (1993). Form Factors for Integrable Lagrangian Field Theories, the Sinh-Gordon Model. Nucl. Phys. B 393: 413–441

    Article  ADS  MathSciNet  Google Scholar 

  31. Fröhlich J. (1975). Quantized Sine Gordon Equation with a Non-Vanishing Mass Term in Two Space-Time Dimensions. Phys. Rev. Lett. 34: 833–836

    Article  ADS  MathSciNet  Google Scholar 

  32. Fröhlich, J.: Quantum Sine Gordon Equation and Quantum Solitons in Two Space-Time Dimensions. In: Renormalization Theory, G. Velo, A.S. Wightman, eds., Series C – Math. and Phys. Sciences, Vol 23, Dordrecht-Boston: Reidel, 1976, pp. 371–414

  33. Glimm J. and Jaffe A. (1981). Quantum Physics - A Functional Integral Point of View. Springer, New York

    MATH  Google Scholar 

  34. Haag R. (1992). Local Quantum Physics, 2nd edition. Springer, New York

    MATH  Google Scholar 

  35. Hepp, K.: On the connection between Wightman and LSZ quantum field theory. In: Brandeis University Summer Institute in Theoretical Physics 1965, Axiomatic Field Theory Vol. 1, M. Chretien, S. Deser, eds., New York: Gordon and Breach, 1966, pp. 135–246

  36. Iagolnitzer D. (1978). Factorization of the multiparticle S-matrix in two-dimensional space-time models. Phys. Rev. D 18: 1275–1285

    ADS  Google Scholar 

  37. Iagolnitzer D. (1993). Scattering in Quantum Field Theories. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  38. Jarchow H. (1981). Locally convex spaces. Teubner, Stuttgart

    MATH  Google Scholar 

  39. Kadison R.V. and Ringrose J.R. (1986). Fundamentals of the Theory of Operator Algebras. Vol. II: Advanced Theory. Academic Press, London-New York

    Google Scholar 

  40. Karowski M., Thun H.J., Truong T.T. and Weisz P.H. (1977). On the uniqueness of a purely elastic S-matrix in (1+1) dimensions. Phys. Lett. 67 B: 321–322

    ADS  Google Scholar 

  41. Kosaki H. (1984). On the continuity of the map \(\varphi\mapsto|\varphi|\) from the predual of a W*-algebra. J. Funct. Anal. 59: 123–131

    Article  MATH  MathSciNet  Google Scholar 

  42. Lechner G. (2003). Polarization-Free Quantum Fields and Interaction. Lett. Math. Phys. 64: 137–154

    Article  MATH  MathSciNet  Google Scholar 

  43. Lechner G. (2005). On the existence of local observables in theories with a factorizing S-matrix. J. Phys. A 38: 3045–3056

    ADS  MathSciNet  Google Scholar 

  44. Lechner, G.: Towards the construction of quantum field theories from a factorizing S-matrix. In: Rigorous Quantum Field Theory, Boutet de Monvel, A., Buchholz, D., Iagolnitzer, D., Moschella, U., eds., Progress in Mathematics Vol. 251, Basel-Boston: Birkhäuser, 2006

  45. Lechner, G.: On the Construction of Quantum Field Theories with Factorizing S-Matrices. PhD thesis (advisor: D. Buchholz), Göttingen University, 2006

  46. Liguori A. and Mintchev M. (1995). Fock representations of quantum fields with generalized statistics. Commun. Math. Phys. 169: 635–652

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Longo R. (1979). Notes on algebraic invariants for noncommutative dynamical systems. Commun. Math. Phys. 69: 195–207

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Longo R. and Rehren K.-H. (2004). Local fields in boundary conformal QFT. Rev. Math. Phys. 16: 909–960

    Article  MATH  MathSciNet  Google Scholar 

  49. Müger M. (1998). Superselection Structure of Massive Quantum Field Theory in 1+1 Dimensions. Rev. Math. Phys. 10: 1147–1170

    Article  MATH  MathSciNet  Google Scholar 

  50. Mund J., Schroer B. and Yngvason J. (2006). String-Localized Quantum Fields and Modular Localization. Commun. Math. Phys. 268: 621–672

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Pietsch A. (1972). Nuclear Locally Convex Spaces. Springer, New York

    Google Scholar 

  52. Reed M. and Simon B. (1975). Methods of Modern Mathematical Physics, Vol II: Fourier Analysis, Self-Adjointness. Academic Press, New York

    Google Scholar 

  53. Reed M. and Simon B. (1979). Methods of Modern Mathematical Physics, Vol III: Scattering Theory. Academic Press, New York

    Google Scholar 

  54. Sakai S. (1971). C*-Algebras and W*-Algebras. Springer, New York

    Google Scholar 

  55. Schroer B. (1997). Modular localization and the bootstrap-formfactor program. Nucl. Phys. B 499: 547–568

    Article  ADS  MathSciNet  Google Scholar 

  56. Schroer B. (1999). Modular wedge localization and the d = 1+1 formfactor program. Ann. Phys. 275: 190–223

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. Schroer B. (2005). Constructive proposals for QFT based on the crossing property and on lightfront holography. Ann. Phys. 319: 48–91

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. Schroer B. and Wiesbrock H.-W. (2000). Modular constructions of quantum field theories with interactions. Rev. Math. Phys. 12: 301–326

    Article  MATH  MathSciNet  Google Scholar 

  59. Smirnov F.A. (1992). Form Factors in Completely Integrable Models of Quantum Field Theory. World Scientific, Singapore

    MATH  Google Scholar 

  60. Stein E. and Weiss G. (1971). Introduction to Fourier Analysis on Euclidian Spaces. Princeton University Press, Princeton, NJ

    Google Scholar 

  61. Streater R.F. and Wightman A.S. (1980). PCT, Spin and Statistics and All That, 3rd edition. Princeton University Press, Princeton, NJ

    Google Scholar 

  62. Takesaki M. (1979). Theory of Operator Algebras I. Springer, New York

    MATH  Google Scholar 

  63. Zamolodchikov A.B. and Zamolodchikov A.B. (1979). Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models. Ann. Phys. 120: 253–291

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gandalf Lechner.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lechner, G. Construction of Quantum Field Theories with Factorizing S-Matrices. Commun. Math. Phys. 277, 821–860 (2008). https://doi.org/10.1007/s00220-007-0381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0381-5

Keywords

Navigation