Skip to main content
Log in

Quantum Out-States Holographically Induced by Asymptotic Flatness: Invariance under Spacetime Symmetries, Energy Positivity and Hadamard Property

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper continues the analysis of the quantum states introduced in previous works and determined by the universal asymptotic structure of four-dimensional asymptotically flat vacuum spacetimes at null infinity M. It is now focused on the quantum state λ M , of a massless conformally coupled scalar field \(\phi\) propagating in M. λ M is “holographically” induced in the bulk by the universal BMS-invariant state λ defined on the future null infinity \(\Im^{+}\) of M. It is done by means of the correspondence between observables in the bulk and those on the boundary at future null infinity discussed in previous papers. This induction is possible when some requirements are fulfilled, in particular whenever the spacetime M and the associated unphysical one, M͂, are globally hyperbolic and M admits future time infinity i +. λ M coincides with Minkowski vacuum if M is Minkowski spacetime. It is now proved that, in the general case of a curved spacetime M, the state λ M enjoys the following further remarkable properties:

  1. (i)

    λ M is invariant under the (unit component of the Lie) group of isometries of the bulk spacetime M.

  2. (ii)

    λ M fulfills a natural energy-positivity condition with respect to every notion of Killing time (if any) in the bulk spacetime M: If M admits a time-like Killing vector, the associated one-parameter group of isometries is represented by a strongly-continuous unitary group in the GNS representation of λ M . The unitary group has positive self-adjoint generator without zero modes in the one-particle space. In this case λ M is a so-called regular ground state.

  3. (iii)

    λ M is (globally) Hadamard in M and thus it can be used as the starting point for the perturbative renormalisation procedure of QFT of \(\phi\) in M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arcioni G. and Dappiaggi C. (2003). Exploring the holographic principle in asymptotically flat space-times via the BMS group. Nucl. Phys. B 674: 553

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Ashtekar A. and Hansen R.O. (1978). A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries and conserved quantities at spatial infinity. J. Math. Phys 19: 1542

    Article  ADS  MathSciNet  Google Scholar 

  3. Ashtekar A. and Xanthopoulos B.C. (1978). Isometries compatible with asymptotic flatness at null infinity: a complete description. J. Math. Phys. 19: 2216

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Araki H. (1999). Mathematical Theory of Quantum Fields. Oxford University Press, Oxford

    MATH  Google Scholar 

  5. Ashtekar, A.: In: General Relativity and Gravitation 2: One Hundred Years after the birth of Albert Einstein, edited by A. Held, New York: Plenum, 1980, pp. 37–70

  6. Ashtekar A. and Streubel M. (1981). Symplectic geometry of radiative modes and conserved quantities at null infinity. Proc. R. Lond. A 376: 585

    Article  ADS  MathSciNet  Google Scholar 

  7. Beem J.K., Eherlich P.E. and Easley K.L. (1996). Global Lorentzian Geometry, Second Edition. Marcel Dekker, Inc., New York

    MATH  Google Scholar 

  8. Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorentzian manifolds and quantization (2006) in press in ESI Lectures in Mathematics and Physics by the European Mathematical Society Publishing House

  9. Bratteli, O., Robinson, D.W.: Operator Algebras And Quantum Statistical Mechanics. Vol. 1: C* And W* Algebras, Symmetry Groups, Decomposition Of States, Second edition, second printing, New York: Springer-Verlag, 2002

  10. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics. Vol. 2: Equilibrium states. Models in quantum statistical mechanics. Second edition, second printing, Berlin: Springer, 2002

  11. Brunetti R., Fredenhagen K. and Kohler M. (1996). The Microlocal spectrum condition and Wick polynomials of free fields on curved space-times. Commun. Math. Phys. 180: 633

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Brunetti R. and Fredenhagen K. (2000). Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds. Commun. Math. Phys. 208: 623

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Brunetti R., Fredenhagen K. and Verch R. (2003). The Generally covariant locality principle: A New paradigm for local quantum field theory. Commun. Math. Phys. 237: 31

    MATH  ADS  MathSciNet  Google Scholar 

  14. Dappiaggi C. (2004). BMS field theory and holography in asymptotically flat space-times. JHEP 0411: 011

    Article  ADS  MathSciNet  Google Scholar 

  15. Dappiaggi C. (2005). Elementary particles, holography and the BMS group. Phys. Lett. B 615: 291

    ADS  MathSciNet  Google Scholar 

  16. Dappiaggi, C.: Free field theory at null infinity and white noise calculus: a BMS invariant dynamical system, http://arxiv:.org/list/math-ph/0607055, 2006

  17. Dappiaggi, C.: Projecting massive scalar fields to null infinity, http://arxiv.org/list/gr-qc/0705.0284, 2007

  18. Dappiaggi C., Moretti V. and Pinamonti N. (2006). Rigorous Steps towards Holography in Asymptotically Flat Spacetimes. Rev. Math. Phy. 18: 349

    Article  MATH  MathSciNet  Google Scholar 

  19. Dimock J. (1980). Algebras of Local Observables on a Manifold. Commun. Math. Phys. 77: 219

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Friedlander, F.G.: The wave equation on a curved space-time. Cambridge: Cambridge Univ. Pr., 1975

  21. Friedrich, H.: On Purely Radiative Space-Times. Commun. Math. Phys. 103, 35 (1986); On the Existence of n-Geodesically Complete or Future Complete Solutions of Einstein’s Field Equations with smooth Asymptotic Structure. Commun. Math. Phys. 107, 585 (1986); On Static and Radiative Space-Times. Commun. Math. Phys. 119, 51 (1988)

  22. Geroch, R.: In: P. Esposito, L. Witten (eds.) Asymptotic Structure of Spacetime, New York: Plenum, 1977

  23. Hollands S. and Wald R.M. (2001). Local Wick polynomials and time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223: 289

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Hollands S. and Wald R.M. (2005). Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17: 227

    Article  MATH  MathSciNet  Google Scholar 

  25. Hollands, S.: Aspects of Quantum Field Theory in Curved Spacetime. Ph.D.thesis, University of York, 2000, advisor B.S. Kay, unpublished

  26. Hörmander L. (1989). The Analysis of Linear Partial Differential Operators I, Second edition. Springer-Verlag, Berlin

    Google Scholar 

  27. H"89 Hörmander L. (1971). Fourier integral operators. I. Acta Math. 127: 79

    Article  MathSciNet  Google Scholar 

  28. Kay B.S. and Wald R.M. (1991). Theorems On The Uniqueness And Thermal Properties Of Stationary, Nonsingular, Quasifree States On Space-Times With A Bifurcate Killing Horizon. Phys. Rept. 207: 49

    Article  ADS  MathSciNet  Google Scholar 

  29. Ko, M., Newmann, E.T., Tod, K.T.: In: P. Esposito, L. Witten (eds.) Asymptotic Structure of Spacetime, New York: Plenum, 1977

  30. Leray, J.: Hyperbolic Differential Equations. Unpublished Lecture Notes, Princeton (1953)

  31. McCarthy, P.J.: Representations of the Bondi-Metzner-Sachs group I. Proc. R. Soc. London A330, 517 (1972); Representations of the Bondi-Metzner-Sachs group II. Proc. R. Soc. London A333, 317 (1973); The Bondi-Metzner-Sachs in the nuclear topology. Proc. R. Soc. London A343, 489 (1975)

  32. Moretti V. (2003). Comments on the stress-energy tensor operator in curved spacetime. Commun. Math. Phys. 232: 189

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Moretti V. (2006). Uniqueness theorems for BMS-invariant states of scalar QFT on the null boundary of asymptotically flat spacetimes and bulk-boundary observable algebra correspondence. Commun. Math. Phys. 268: 727

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. O’Neill, B.: Semi-Riemannian Geometry with applications to Relativity. New York: Academic Press, USA, 1983

  35. Penrose R. (1963). Asymptotic Properties of Space and Time. Phys. Rev. Lett. 10: 66

    Article  ADS  MathSciNet  Google Scholar 

  36. Penrose, R.: In: A.O. Barut (ed.), Group Theory in Non-Linear Problems, Dordrecht: Reidel, 1974, p. 97, Chapter 1

  37. Radzikowski M.J. (1996). Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179: 529

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Radzikowski M.J. (1996). A Local to global singularity theorem for quantum field theory on curved space-time. Commun. Math. Phys. 180: 1

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. II. Fourier Analysis, Self-Adjointness, New York: Academic Press, 1975

  40. Sahlmann H. and Verch R. (2001). Microlocal spectrum condition and Hadamard form for vector valued quantum fields in curved space-time. Rev. Math. Phys. 13: 1203

    Article  MATH  MathSciNet  Google Scholar 

  41. Strohmaier A., Verch R. and Wollenberg M. (2002). Microlocal analysis of quantum fields on curved space-times: Analytic wavefront sets and Reeh-Schlieder theorems. J. Math. Phys. 43: 5514

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Wald R.M. (1984). General Relativity. University of Chicago Press, Chicago

    MATH  Google Scholar 

  43. Wald R.M. (1994). Quantum field theory in curved space-time and black hole thermodynamics. University of Chicago Press, Chicago

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valter Moretti.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moretti, V. Quantum Out-States Holographically Induced by Asymptotic Flatness: Invariance under Spacetime Symmetries, Energy Positivity and Hadamard Property. Commun. Math. Phys. 279, 31–75 (2008). https://doi.org/10.1007/s00220-008-0415-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0415-7

Keywords

Navigation