Skip to main content
Log in

String-Localized Quantum Fields and Modular Localization

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study free, covariant, quantum (Bose) fields that are associated with irreducible representations of the Poincaré group and localized in semi-infinite strings extending to spacelike infinity. Among these are fields that generate the irreducible representations of mass zero and infinite spin that are known to be incompatible with point-like localized fields. For the massive representations and the massless representations of finite helicity, all string-localized free fields can be written as an integral, along the string, of point-localized tensor or spinor fields. As a special case we discuss the string-localized vector fields associated with the point-like electromagnetic field and their relation to the axial gauge condition in the usual setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott L.F. (1976) Massless particles with continuous spin indices. Phys. Rev. D 13, 2291–2294

    Article  MathSciNet  ADS  Google Scholar 

  2. Babujian H., Foerster A., Karowski M. (2006) Exact form factors in integrable quantum field theories: the scaling Z(N)-Ising model. Nucl. Phys. B 736, 169–198

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bisognano J.J., Wichmann E.H. (1975) On the duality condition for a Hermitian scalar field. J. Math. Phys. 16, 985–1007

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Borchers H.-J., Buchholz D., Schroer B. (2001) Polarization-Free Generators and the S-Matrix. Commun. Math. Phys. 219, 125–140

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bros J., Buchholz D. (1994) Towards a relativistic KMS-condition. Nucl. Phys. B 429, 291–318

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bros J., Moschella U. (1996) Two-point functions and quantum fields in de Sitter universe. Rev. Math. Phys. 8, 327–391

    Article  MATH  MathSciNet  Google Scholar 

  7. Brunetti R., Guido D., Longo R. (2002) Modular localization and Wigner particles. Rev. Math. Phs. 14, 759–786

    Article  MATH  MathSciNet  Google Scholar 

  8. Buchholz D., D’Antoni C., Fredenhagen K. (1987) The universal structure of local algebras. Commun. Math. Phys. 111, 123–135

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Buchholz D., Fredenhagen K. (1982) Locality and the structure of particle states. Commun. Math. Phys 84, 1–54

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Buchholz D., Summers S.J. (2005) Quantum Statistics and Locality. Phys. Lett. A 337, 17–21

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Buchholz D., Yngvason J. (1991) Generalized Nuclearity Conditions and the Split Property in Quantum Field theory. Lett. Math. Phys. 23, 159–167

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Buchholz D., Yngvason J. (1994) Phys. Rev. Lett. 73, 613–616

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Buchholz D., Wichmann E.H. (1986) Causal independence and the energy density of states in local quantum field theory. Commun. Math. Phys. 106, 321–344

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Chang S.-J. (1967) Lagrange Formulation for Systems with Higher Spin. Phys. Rev. 161, 1308–1315

    Article  ADS  Google Scholar 

  15. Dimock J. (2000) Locality in free string field theory. J. Math. Phys. 41, 40–61

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Doplicher S., Haag R., Roberts J.E. (1969) Fields, observables and gauge transformations II. Commun. Math. Phys. 15, 173–200

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Doplicher S., Longo R. (1984) Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Duetsch, M., Schroer, B.: Massive vector mesons and gauge theory. J. Phys. A: Math. Gen. 30, 4317 (2000), and previous work by G. Scharf cited therein

  19. Epstein H., Glaser V. (1973) The role of locality in perturbation theory. Ann. Inst. H. Poincaré A 19, 211–295

    MathSciNet  Google Scholar 

  20. Erler, D.G., Gross, D.J.: Locality , Causality and an Initial Value Formulation of Open Bosonic String Field Theory. http://arxiv.org/list/hep-th/0406199, 2004

  21. Fassarella L., Schroer B. (2002) Wigner particle theory and local quantum physics. J. Phys. A 35, 9123–9164

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Fermi E. (1932) Quantum Theory of Radiation. Rev. Mod. Phys. 4, 87–132

    Article  MATH  ADS  Google Scholar 

  23. Fredenhagen K., Gaberdiel M., Rüger S.M. (1996) Scattering states of plektons (particles with braid group statistics) in 2+1 dimensional field theory. Commun. Math. Phys. 175, 319–355

    Article  MATH  ADS  Google Scholar 

  24. Fredenhagen K., Rehren K.-H., Schroer B. (1992) Superselection sectors with braid group statistics and exchange algebras II: Geometric aspects and conformal covariance. Rev. Math. Phys. SI1, 113–157

    Article  MathSciNet  Google Scholar 

  25. Fröhlich J. (1976) New super-selection sectors (“soliton-states”) in two dimensional Bose quantum field models. Commun. Math. Phys. 47, 269–310

    Article  ADS  Google Scholar 

  26. Fröhlich J., Gabbiani F. (1990) Braid Statistics in Local Quantum Field Theory. Rev. Math. Phys. 2, 251–353

    Article  MATH  MathSciNet  Google Scholar 

  27. Haag R., (1996) Local quantum physics Second ed Texts and Monographs in Physics. Berlin-Heidelberg, Springer

    Google Scholar 

  28. Hegerfeldt G.C. (1994) Causality Problems in Fermi’s Two Atom System. Phys. Rev. Lett. 72, 596–599

    Article  MATH  ADS  Google Scholar 

  29. Hirata K. (1977) Quantization of Massless Fields with Continuous Spin. Prog. Theor. Phys. 58, 652–666

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Iverson G.J., Mack G. (1971) Quantum fields and interactions of massless particles: The continuous spin case. Ann. Phys. 64, 211–253

    Article  MathSciNet  ADS  Google Scholar 

  31. Joos H. (1962) Zur Darstellungstheorie der inhomogenen Lorentzgruppe als Grundlage quantenmechanischer Kinematik. Forts. der Phys. 10, 65–146

    Article  MATH  Google Scholar 

  32. Jordan P. (1935) Zur Quantenelektrodynamik, I. Eichinvariante Operatoren. Zeits. für Phys. 95, 202

    MATH  Google Scholar 

  33. ———,: Beiträge zur Neutrinotheorie des Lichts. Zeits. für Phys. 114, 229 (1937)

  34. Klaiber B., (1968) The Thirring model. In: Barut A.O., Brittin W.E. (eds), Lectures in Theoretical Physics, Vol 10A. New York, Gordon and Breach, pp. 141–176

    Google Scholar 

  35. Lechner, G.: Towards the construction of quantum field theories from a factorizing S-matrix. http://arxiv. org//list/hep-th/0502184, 2005

  36. Lechner, G.: An Existence Proof for Interacting Quantum Field Theories with a Factorizing S-Matrix. http://arxiv.org//list/math-ph/0602022, 2006

  37. Leinaas J.M., Myrheim J. (1977) On the Theory of Identical Particles. Il Nuovo Cimento 37b: 1–23

    ADS  Google Scholar 

  38. Leyland, P., Roberts, J., Testard, D.: Duality for Quantum Free Fields. Unpublished notes, CNRS , 1978

  39. Licht A.L. (1966) Local States. J. Math. Phys. 7: 1656

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Malament D., (1996) In defence of dogma: Why there cannot be a relativistic quantum mechanics of (localizable) particles. In: Clifton R.K. (ed), Perspectives of quantum reality. Dordrecht, Kluwer

    Google Scholar 

  41. Mandelstam S. (1962) Quantum electrodynamics without potentials. Ann. Phys. 19, 1–24

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Mourad, J.: Continuous spin and tensionless strings. http://arxiv.org//list/hep-th/0410009, 2004

  43. Mund J. (1998) No-go theorem for ‘free’ relativistic anyons in d = 2 + 1. Lett. Math. Phys. 43, 319–328

    Article  MATH  MathSciNet  Google Scholar 

  44. ———,: The Bisognano-Wichmann theorem for massive theories. Ann. H. Poin. 2, 907–926 (2001)

  45. ———,: Modular localization of massive particles with “any” spin in d=2+1. J. Math. Phys. 44, 2037–2057 (2003)

  46. ———,: String-Localized Covariant Quantum Fields. To appear in Rigorous Quantum Field Theory, Birkhauser Publishing (2006), Basel; available at http://arxiv.org//list/hep-th/0502014, 2005

  47. Mund J., Schroer B., Yngvason J. (2004) String–localized quantum fields from Wigner representations. Phys. Lett. B 596, 156–162

    MathSciNet  ADS  Google Scholar 

  48. Newton T.D., Wigner E.P. (1949) Localized States for Elementary Systems. Rev. Mod. Phys. 21, 400–406

    Article  MATH  ADS  Google Scholar 

  49. Perez J.F., Wilde I.F. (1977) Localization and causality in relativistic quantum mechanics. Phys. Rev. 16, 315–317

    Article  ADS  Google Scholar 

  50. Polchinski J., (1998) String Theory Vol I and II. Cambridge, Cambridge Univ Press

    Google Scholar 

  51. Reed M., Simon B., (1975) Methods of modern mathematical physics II. New York, Academic Press

    MATH  Google Scholar 

  52. Reeh H., Schlieder S. (1961) Bemerkungen zur unitäräquivalenz von Lorentzinvarianten Feldern. Nuovo Cimento 22, 1051–1068

    Article  MathSciNet  Google Scholar 

  53. Rieffel M.A., Van Daele A. (1977) A bounded operator approach to Tomita-Takesaki theory. Pac. J. Math. 1, 187–221

    MathSciNet  Google Scholar 

  54. Savvidy G. (2005) Tensionless strings, correspondence with SO(D,D) sigma model. Phys. Lett. B 615, 285–290

    MathSciNet  ADS  Google Scholar 

  55. Schroer B. (1999) Modular Wedge Localization and the d=1+1 Formfactor Program. Ann. Phys. 295, 190–223

    MathSciNet  ADS  Google Scholar 

  56. Schroer B. (2005) Constructive proposals based on the crossing property and the lightfront holography. Ann. Phys. 319, 48

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. Steinmann O. (1982) A Jost-Schroer theorem for string fields. Commun. Math. Phys. 87, 259–264

    Article  MATH  MathSciNet  ADS  Google Scholar 

  58. Streater R.F., Wightman A.S., (1964) PCT, spin and statistics, and all that. New York, W.A. Benjamin Inc

    MATH  Google Scholar 

  59. Streater R.F., Wilde I.F. (1970) Fermion states of a Bose field. Nucl. Phys. B24, 561

    Article  ADS  Google Scholar 

  60. Strocchi F. (1969). Phys. Rev 166, 1302–1307

    Article  MathSciNet  ADS  Google Scholar 

  61. Summers S. (1990) On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2, 201–247

    Article  MATH  MathSciNet  Google Scholar 

  62. Weinberg, S.: What is quantum field theory, and what did we think it is? http://arxiv.org/list/ hepth/9702027, 1997

  63. Weinberg S., (1995) The Quantum Theory of Fields I. Cambridge, Cambridge University Press

    Google Scholar 

  64. Weinberg S. (1964) Feynman Rules For Any Spin. Phys. Rev. 133: B1318–30

    Article  MathSciNet  ADS  Google Scholar 

  65. Werner R. (1987) Local preparability of States and the Split Property in Quantum Field Theory. Lett. Math. Phys. 13, 325–329

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. Wigner E.P. (1948) Relativistische Wellengleichungen. Z. Physik 124, 665–684

    Article  MATH  MathSciNet  ADS  Google Scholar 

  67. Wilczek F. (1982) Quantum Mechanics of Fractional-Spin Particles. Phys. Rev. Lett. 49, 957–1149

    Article  MathSciNet  ADS  Google Scholar 

  68. Wilson K.G. (1974) Confinement of Quarks. Phys. Rev. D 10, 2445–2459

    Article  ADS  Google Scholar 

  69. Yngvason J. (1970) Zero-mass infinite spin representations of the Poincaré group and quantum field theory. Commun. Math. Phys. 18, 195–203

    Article  MATH  MathSciNet  ADS  Google Scholar 

  70. Yngvason J. (2005) The Role of Type III Factors in Quantum Field Theory. Rep. Math. Phys. 55, 135–147

    Article  MathSciNet  MATH  ADS  Google Scholar 

  71. Mund, J., Schroer, B., Yngvason, Y.: http://arxiv.org/abs/math-ph/0511042, 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Yngvason.

Additional information

Communicated by Y. Kawahigashi

Dedicated to Hans-Jürgen Borchers on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mund, J., Schroer, B. & Yngvason, J. String-Localized Quantum Fields and Modular Localization. Commun. Math. Phys. 268, 621–672 (2006). https://doi.org/10.1007/s00220-006-0067-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0067-4

Keywords

Navigation