Skip to main content
Log in

Engineered minichromosomes in plants

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Engineered minichromosomes have been produced in several plant species via telomere-mediated chromosomal truncation. This approach bypasses the complications of the epigenetic nature of centromere function in plants, which has to date precluded the production of minichromosomes by the re-introduction of centromere sequences to a plant cell. Genes to be added to a cleaved chromosome are joined together with telomere repeats on one side. When these constructs are introduced into plant cells, the genes are ligated to the broken chromosomes but the telomere repeats will catalyze the formation of a telomere on the other end cutting the chromosome at that point. Telomere-mediated chromosomal truncation is sufficiently efficient that very small chromosomes can be generated consisting of basically the endogenous centromere and the added transgenes. The added transgenes provide a platform onto which it should be possible to assemble a synthetic chromosome to specification. Combining engineered minichromosomes with doubled haploid breeding should greatly expedite the transfer of transgenes to new lines and to test the interaction of transgenes in new background genotypes. Potential basic and applied applications of synthetic chromosomes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CENH3:

Variant of histone H3 present at active centromeres

CRM2:

Centromeric retrotransposon maize 2

BiBAC:

Binary bacterial artificial chromosome vector for plant transformation

References

  • Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Han F (2009) Maize centromeres: structure, function, epigenetics. Annu Rev Genet 43:287–303

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Presting GG (2012) Retrotransposon insertion targeting: a mechanism for homogenization of centromere sequences on nonhomologous chromosomes. Genes Dev 26:638–640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Birchler JA, Veitia RA (2012) Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci U S A 109:14746–14753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carlson WR (1986) The B chromosome of maize. CRC Crit Rev Plant Sci 3:201–226

    Article  Google Scholar 

  • Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93:381–382

    Article  Google Scholar 

  • Deimling S, Rober FK, Geiger HH (1997) Methodik und genetic der in-vivo-haploid eninducktionbeimais. Vortr PX Anzensuchtg 38:203–224

    Google Scholar 

  • Farr CJ, Stevanovic M, Thomson EJ, Goodfellow PN, Cooke HJ (1992) Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet 2:275–282

    Article  CAS  PubMed  Google Scholar 

  • Fauser F, Schmil S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359

    Article  CAS  PubMed  Google Scholar 

  • Fu S, Lv Z, Gao Z, Wu H, Pang J, Zhang B, Dong Q, Guo X, Wang XJ, Birchler JA, Han F (2013) De novo centromere formation on a chromosome fragment in maize. Proc Natl Acad Sci U S A 110:6033–6036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaeta RT, Masonbrink RE, Krishnaswamy L, Zhao C, Birchler JA (2012) Synthetic chromosome platforms in plants. Annu Rev Plant Biol 63:307–330

    Article  CAS  PubMed  Google Scholar 

  • Gaeta RT, Masonbrink RE, Zhao C, Sanyal A, Krishnaswamy L, Birchler JA (2013) In vivo modification of a maize engineered minichromosome. Chromosoma 122:221–232

    Article  CAS  PubMed  Google Scholar 

  • Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci U S A 93:9975–9979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han F, Lamb J, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci, U S A 103:3238–3243

  • Han F, Gao Z, Birchler JA (2009) Centromere inactivation and reactivation reveals both epigenetic and genetic components for centromere specification. Plant Cell 21:1929–1939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heller R, Brown KE, Burgtof C, Brown WR (1996) Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc Natl Acad Sci U S A 93:7125–7130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kapusi E, Ma L, Teo CH, Hensel G, Himmelbach A, Schubert I, Mette MF, Kumlehn J, Houben A (2012) Telomere-mediated truncation of barley chromosomes. Chromosoma 121:181–190

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ (2014) Synthetic biology of metabolism: using natural variation to reverse engineer systems. Curr Opin Plant Biol 19:20–26

    Article  CAS  PubMed  Google Scholar 

  • Masonbrink RE, Birchler JA (2012a) Accumulation of multiple copies of maize minichromosomes. Cytogenet Genome Res 137:50–59

    Article  CAS  PubMed  Google Scholar 

  • Masonbrink RE, Birchler JA (2012b) Multiple maize minichromosomes in meiosis. Chromosom Res 20:395–402

    Article  CAS  Google Scholar 

  • Murray AW, Szostak JW (1983) Construction of artificial chromosomes in yeast. Nature 305:189–193

    Article  CAS  PubMed  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A 102:9842–9847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    Article  CAS  PubMed  Google Scholar 

  • Nelson A, Lamb J, Kobrossly P, Shippen D (2011) Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis. Plant Cell 23:2263–2273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ow DW (2011) Recombinase-mediated gene stacking as a transformation operating system. J Integr Plant Biol 53:512–519

    Article  CAS  PubMed  Google Scholar 

  • Patron NJ (2014) DNA assembly for plant biology: techniques and tools. Curr Opin Plant Biol 19:14–19

    Article  CAS  PubMed  Google Scholar 

  • Phan BH, Jin W, Topp CN, Zhong CX, Jiang J, Dawe RK, Parrott WA (2007) Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Res 16:341–351

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Chan SW (2010) Haploid plant produced by centromere-mediated genome elimination. Nature 464:615–618

    Article  CAS  PubMed  Google Scholar 

  • Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136

    Article  CAS  PubMed  Google Scholar 

  • Roman H (1947) Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics 32:391–409

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roman H (1948) Directed fertilization in maize. Proc Natl Acad Sci U S A 34:36–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Ow DW (2001) Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol Biol 46:561–566

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Ariza-Nieto M, Wilson AJ (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2:169–179

    Article  CAS  PubMed  Google Scholar 

  • Teo CH, Ma L, Kapusi E, Hensel G, Kumlehn J, Schubert I, Houben A, Mette MF (2011) Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana. Plant J 68:28–39

    Article  CAS  PubMed  Google Scholar 

  • Vega JM, Yu W, Han F, Kato A, Peters EM, Zhang ZJ, Birchler JA (2008) Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors. Plant Mol Biol 66:587–598

    Article  CAS  PubMed  Google Scholar 

  • Wolfgruber TK, Sharma A, Schneider KL, Albert PS, Koo DH, Shi J, Gao A, Han F, Lee H, Xu R, Allison J, Birchler JA, Jiang J, Dawe RK, Presting GG (2009) Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. PLoS Genet 5:e1000743

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu C, Cheng Z, Yu W (2012) Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation. Plant J 70:1070–1079

    Article  CAS  PubMed  Google Scholar 

  • Yau Y-Y, Wang Y, Thomson JG, Ow DW (2011) Method for Bxb1-mediated site-specific integration in planta. Plant Chromosome Eng: Methods Protoc Methods Mol Biol 701:147–166

    Article  CAS  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A 103:17331–17336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu W, Han F, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci U S A 104:8924–8929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang B, Lv Z, Pang J, Liu Y, Guo X, Fu S, Li J, Dong Q, Wu HJ, Gao Z, Wang XJ, Han F (2013) Formation of a functional maize centromere after loss of centromeric sequences and gain of ectopic sequences. Plant Cell 25:1979–1989

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao X, Xu X, Xie H, Chen S, Jin W (2013) Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol 163:721–731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research on this topic in the author’s laboratory is supported by grant IOS-1339198 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler.

Additional information

Responsible Editors: Natalay Kouprina and Vladimir Larionov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birchler, J.A. Engineered minichromosomes in plants. Chromosome Res 23, 77–85 (2015). https://doi.org/10.1007/s10577-014-9454-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-014-9454-4

Keywords

Navigation