Skip to main content
  • 1336 Accesses

Abstract

Engineered minichromosomes have been produced in plants using telomere-mediated truncation that cleaves chromosome arms and simultaneously places desired transgenes linked to an endogenous centromere. Proof-of-concept experiments have been successful, illustrating that site-specific recombination can occur at terminal sites on the chromosome and that in vivo modification of minichromosomes is possible as demonstrated by selectable marker removal. Future developments are discussed that would amplify the utility of engineered minichromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    Article  CAS  PubMed  Google Scholar 

  • Ananiev EV, Wu C, Chamberlin MA, Svitashev S, Schwartz C et al (2009) Artificial chromosome formation in maize (Zea mays L.) Chromosoma 118:157–177

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Han F (2009) Maize centromeres: structure, function, epigenetics. Annu Rev Genet 43:287–303

    Article  CAS  PubMed  Google Scholar 

  • Carlson WR (1986) The B chromosome of maize. CRC Crit Rev Plant Sci 3:201–226

    Article  Google Scholar 

  • Carlson SR, Rudgers GW, Zieler H, Mach JM, Luo S, Grunden E et al (2007) Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLoS Genet 3:e179

    Article  PubMed Central  Google Scholar 

  • Dale EC, Ow DW (1990) Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91:79–85

    Article  CAS  PubMed  Google Scholar 

  • De Neve M DeBuck S Jacobs A Van Montagu M Depicker A (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11:15–29

    Article  CAS  PubMed  Google Scholar 

  • Farr CJ, Stevanovic M, Thomson EJ, Goodfellow PN, Cooke HJ (1992) Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet 2:275–282

    Article  CAS  PubMed  Google Scholar 

  • Farr CJ, Bayne RA, Kipling D, Mills W, Critcher R, Cooke HJ (1995) Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J 14:5444–5454

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fu S, Lv Z, Gao Z, Wu H, Pang J, Zhang B et al (2013) De novo centromere formation on a chromosome fragment in maize. Proc Natl Acad Sci U S A 110:6033–6036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaeta RT, Masonbrink RE, Krishnaswamy L, Zhao C, Birchler JA (2012) Synthetic chromosome platforms in plants. Annu Rev Plant Biol 63:307–330

    Article  CAS  PubMed  Google Scholar 

  • Gaeta RT, Masonbrink RE, Zhao C, Sanyal A, Krishnaswamy L, Birchler JA (2013) In vivo modification of a maize engineered minichromosome. Chromosoma 122:221–232

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Fu S, Dong Q, Han F, Birchler JA (2011) Inactivation of a centromere during the formation of a translocation in maize. Chromosome Res 19:755–761

    Article  CAS  PubMed  Google Scholar 

  • Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci U S A 103:3238–3243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han F, Gao Z, Yu W, Birchler JA (2007) Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion. Plant Cell 19:3853–3843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han F, Gao Z, Birchler JA (2009) Centromere inactivation and reactivation reveals both epigenetic and genetic components for centromere specification. Plant Cell 21:1929–1939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15:345–355

    Article  CAS  PubMed  Google Scholar 

  • Heller R, Brown KE, Burgtof C, Brown WR (1996) Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc Natl Acad Sci U S A 93:7125–7130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones N, Houben A (2003) B chromosomes in plants: escapees from the A chromosome genome? Trends Plant Sci 8:417–423

    Article  CAS  PubMed  Google Scholar 

  • Kapusi E, Ma L, Teo CH, Hensel G, Himmelbach A, Schubert I et al (2012) Telomere-mediated truncation of barley chromosomes. Chromosoma 121:181–190

    Article  CAS  PubMed  Google Scholar 

  • Kerbach S, Lorz H, Becker D (2005) Site-specific recombination in Zea mays. Theor Appl Genet 111:1608–1616

    Article  CAS  PubMed  Google Scholar 

  • Masonbrink RE, Birchler JA (2012a) Accumulation of multiple copies of maize minichromosomes. Cytogenet Genome Res 137:50–59

    Google Scholar 

  • Masonbrink RE, Birchler JA (2012b) Multiple maize minichromosomes in meiosis. Chromosome Res 20:395–402

    Google Scholar 

  • Murray AW, Szostak JW (1983) Construction of artificial chromosomes in yeast. Nature 305:189–193

    Article  CAS  PubMed  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A 102:9842–9847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nelson A, Lamb J, Kobrossly P, Shippen D (2011) Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis. Plant Cell 23:2263–2272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ow DW (2011) Recombinase-mediated gene stacking as a transformation operating system. J. Integr Plant Biol 53:512–519

    Article  CAS  PubMed  Google Scholar 

  • Phan BH, Jin W, Topp CN, Zhong CX, Jiang J, Dawe RK, Parrott WA (2007) Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Res 16:341–351

    Article  CAS  PubMed  Google Scholar 

  • Radchuk VV, Van DT, Klocke E (2005) Multiple gene co-integration in Arabidopsis thaliana predominantly occurs in the same genetic locus after simultaneous in planta transformation with distinct Agrobacterium tumefaciens strains. Plant Sci 168:1515–1523

    Google Scholar 

  • Roman H (1947) Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics 32:391–409

    PubMed Central  CAS  PubMed  Google Scholar 

  • Srivastava V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci U S A 96:11117–11121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srivastava V, Ariza-Nieto M, Wilson AJ (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2:169–179

    Article  CAS  PubMed  Google Scholar 

  • Teo CH, Ma L, Kapusi E, Hensel G, Kumlehn J, Schubert I et al (2011) Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana. Plant J 68:28–39

    Article  CAS  PubMed  Google Scholar 

  • Teo CH, Lermontova I, Houben A, Mette MF, Schubert I (2013) De novo generation of plant centromeres at tandem repeats. Chromosoma 122:233–241

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of selectable marker gene from transgenic plants by the Cre/lox site-specific recombination system. Transgenic Res 14:605–614

    Article  CAS  PubMed  Google Scholar 

  • Ward EJ (1973) Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics 73:387–391

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu C, Cheng Z, Yu W (2012) Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation. Plant J 70:1070–1079

    Article  CAS  PubMed  Google Scholar 

  • Yau Y-Y, Wang Y, Thomson JG, Ow DW (2011) Method for Bxb1-mediated site-specific integration in planta. Plant Chromosome Eng Methods Protoc Methods Mol Biol 701:147–166

    Article  CAS  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A 103:17331–17336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu W, Han F, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci U S A 104:8924–8929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang B, Lv Z, Pang J, Liu Y, Gui X, Fu S et al (2013). Formation of a functional maize centromere after loss of centromeric sequences and gain of ectopic sequences. Plant Cell 26(6):1979–1989

    Article  Google Scholar 

  • Zubco E, Scutt C, Meyer P (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18:442–445

    Article  Google Scholar 

Download references

Acknowledgments

Research on this topic is supported by NSF Plant Genome grant DBI 0701297 and IOS 1339198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Birchler, J. (2015). Engineered Minichromosome Technology in Plants. In: Azhakanandam, K., Silverstone, A., Daniell, H., Davey, M. (eds) Recent Advancements in Gene Expression and Enabling Technologies in Crop Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2202-4_13

Download citation

Publish with us

Policies and ethics