Skip to main content
Log in

Telomere-mediated truncation of barley chromosomes

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Engineered minichromosomes offer an enormous opportunity to plant biotechnology as they have the potential to simultaneously transfer and stably express multiple genes. Following a top-down approach, we truncated endogenous chromosomes in barley (Hordeum vulgare) by Agrobacterium-mediated transfer of T-DNA constructs containing telomere sequences. Blocks of Arabidopsis-like telomeric repeats were inserted into a binary vector suitable for stable transformation. After transfer of these constructs into immature embryos of diploid and tetraploid barley, chromosome truncation by T-DNA-induced de novo formation of telomeres could be confirmed by fluorescent in situ hybridisation, primer extension telomere repeat amplification and DNA gel blot analysis in regenerated plants. Telomere seeding connected to chromosome truncation was found in tetraploid plants only, indicating that genetic redundancy facilitates recovery of shortened chromosomes. Truncated chromosomes were transmissible in sexual reproduction, but were inherited at rates lower than expected according to Mendelian rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aufsatz W, Mette MF, van der Winden J, Matzke AJ, Matzke M (2002) RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci USA 99(Suppl 4):16499–16506

    Article  PubMed  CAS  Google Scholar 

  • Barnett MA, Buckle VJ, Evans EP, Porter AC, Rout D, Smith AG, Brown WR (1993) Telomere directed fragmentation of mammalian chromosomes. Nucleic Acids Res 21:27–36

    Article  PubMed  CAS  Google Scholar 

  • Belostotsky DA, Ananiev EV (1990) Characterization of relic DNA from barley genome. Theor Appl Genet 80:374–380

    Article  Google Scholar 

  • Birchler JA, Krishnaswamy L, Gaeta RT, Masonbrink R, Zhao C (2010) Engineered minichromosomes in plants. Crit Rev Plant Sci 29:135–147

    Article  CAS  Google Scholar 

  • Boch J (2011) TALEs of genome targeting. Nat Biotechnol 29:135–136

    Article  PubMed  CAS  Google Scholar 

  • Buerstedde JM, Takeda S (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67:179–188

    Article  PubMed  CAS  Google Scholar 

  • Chiurazzi M, Signer ER (1994) Termini and telomeres in T-DNA transformation. Plant Mol Biol 26:923–934

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  PubMed  CAS  Google Scholar 

  • Clark KA, Krysan PJ (2010) Chromosomal translocations are a common phenomenon in Arabidopsis thaliana T-DNA insertion lines. Plant J 64:990–1001

    Article  PubMed  CAS  Google Scholar 

  • Clarke L, Carbon J (1980) Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287:504–509

    Article  PubMed  CAS  Google Scholar 

  • De Buck S, De Wilde C, Van Montagu M, Depicker A (2000) Determination of the T-DNA transfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants. Mol Plant Microbe Interact 13:658–665

    Article  PubMed  Google Scholar 

  • Farr C, Fantes J, Goodfellow P, Cooke H (1991) Functional reintroduction of human telomeres into mammalian cells. Proc Natl Acad Sci USA 88:7006–7010

    Article  PubMed  CAS  Google Scholar 

  • Fuchs J, Brandes A, Schubert I (1995) Telomere sequence localization and karyotype evolution in higher plants. Plant Syst Evol 196:227–241

    Article  CAS  Google Scholar 

  • Fukui K, Kamisugi Y, Sakai F (1994) Physical mapping of 5S rDNA loci by direct-cloned biotinylated probes in barley chromosomes. Genome 37:105–111

    Article  PubMed  CAS  Google Scholar 

  • Gaeta RT, Danilova TV, Zhao C, Masonbrink RE, McCaw ME, Birchler JA (2011) Recovery of a telomere-truncated chromosome via a compensating translocation in maize. Genome 54:184–195

    Article  PubMed  CAS  Google Scholar 

  • Grimes BR, Monaco ZL (2005) Artificial and engineered chromosomes: developments and prospects for gene therapy. Chromosoma 114:230–241

    Article  PubMed  CAS  Google Scholar 

  • Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15:345–355

    Article  PubMed  CAS  Google Scholar 

  • Heacock M, Spangler E, Riha K, Puizina J, Shippen DE (2004) Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining. EMBO J 23:2304–2313

    Article  PubMed  CAS  Google Scholar 

  • Heacock ML, Idol RA, Friesner JD, Britt AB, Shippen DE (2007) Telomere dynamics and fusion of critically shortened telomeres in plants lacking DNA ligase IV. Nucleic Acids Res 35:6490–6500

    Article  PubMed  CAS  Google Scholar 

  • Hensel G, Kastner C, Oleszczuk S, Riechen J, Kumlehn J (2009) Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int J Plant Genomic 2009:835608

    Google Scholar 

  • Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant–microbe interactions. J Plant Physiol 165:71–82

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach A, Zierold U, Hensel G, Riechen J, Douchkov D, Schweizer P, Kumlehn J (2007) A set of modular binary vectors for transformation of cereals. Plant Physiol 145:1192–1200

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Dawe RK, Jiang J, Schubert I (2008) Engineered plant minichromosomes: a bottom-up success? Plant Cell 20:8–10

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Nasuda S, Endo TR (2011) Plant B chromosomes. Methods Mol Biol 701:97–111

    Article  PubMed  CAS  Google Scholar 

  • Hudakova S, Michalek W, Presting GG, ten Hoopen R, dos Santos K, Jasencakova Z, Schubert I (2001) Sequence organization of barley centromeres. Nucleic Acids Res 29:5029–5035

    Article  PubMed  CAS  Google Scholar 

  • Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, McGill NI, Cooke H, Masumoto H (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16:431–439

    Article  PubMed  CAS  Google Scholar 

  • Irvine DV, Shaw ML, Choo KH, Saffery R (2005) Engineering chromosomes for delivery of therapeutic genes. Trends Biotechnol 23:575–583

    Article  PubMed  CAS  Google Scholar 

  • Kabir MA, Rustchenko E (2005) Determination of gaps by contig alignment with telomere-mediated chromosomal fragmentation in Candida albicans. Gene 345:279–287

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Zheng YZ, Auger DL, Phelps-Durr T, Bauer MJ, Lamb JC, Birchler JA (2005) Minichromosomes derived from the B chromosome of maize. Cytogenet Genome Res 109:156–165

    Article  PubMed  CAS  Google Scholar 

  • Kilian A, Stiff C, Kleinhofs A (1995) Barley telomeres shorten during differentiation but grow in callus culture. Proc Natl Acad Sci USA 92:9555–9559

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita N, Berr A, Belin C, Chappuis R, Nishizawa NK, Lopez-Molina L (2010) Identification of growth insensitive to ABA3 (gia3), a recessive mutation affecting ABA Signaling for the control of early post-germination growth in Arabidopsis thaliana. Plant Cell Physiol 51:239–251

    Article  PubMed  CAS  Google Scholar 

  • Kynast RG, Riera-Lizarazu O, Vales MI, Okagaki RJ, Maquieira SB, Chen G, Ananiev EV, Odland WE, Russell CD, Stec AO, Livingston SM, Zaia HA, Rines HW, Phillips RL (2001) A complete set of maize individual chromosome additions to the oat genome. Plant Physiol 125:1216–1227

    Article  PubMed  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology (NY) 9:963–967

    Article  CAS  Google Scholar 

  • Lim HN, Farr CJ (2004) Chromosome-based vectors for mammalian cells: an overview. Methods Mol Biol 240:167–186

    PubMed  CAS  Google Scholar 

  • Ma L, Vu GT, Schubert V, Watanabe K, Stein N, Houben A, Schubert I (2010) Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosome Res 18:841–850

    Article  PubMed  CAS  Google Scholar 

  • Murray AW, Szostak JW (1983) Construction of artificial chromosomes in yeast. Nature 305:189–193

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, Kandels-Lewis S, Larionov V, Earnshaw WC, Masumoto H (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14:507–522

    Article  PubMed  CAS  Google Scholar 

  • Nelson AD, Lamb JC, Kobrossly PS, Shippen DE (2011) Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis. Plant Cell 23:2263–2272

    Article  PubMed  CAS  Google Scholar 

  • Palotta M, Graham R, Langridge P, Sparrow D, Barker S (2000) RFLP mapping of manganese efficiency in barley. Theor Appl Genet 101:1100–1108

    Article  Google Scholar 

  • Pecinka A, Kato N, Meister A, Probst AV, Schubert I, Lam E (2005) Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana. J Cell Sci 118:3751–3758

    Article  PubMed  CAS  Google Scholar 

  • Reiss B (2003) Homologous recombination and gene targeting in plant cells. Int Rev Cytol 228:85–139

    Article  PubMed  CAS  Google Scholar 

  • Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schubert I, Shi F, Fuchs J, Endo TR (1998) An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J 14:489–495

    Article  CAS  Google Scholar 

  • Shi F, Endo TR (1997) Production of wheat–barley disomic addition lines possessing an Aegilops cylindrica gametocidal chromosome. Genes Genet Syst 72:243–248

    Article  Google Scholar 

  • Tamar S, Papadopoulou B (2001) A telomere-mediated chromosome fragmentation approach to assess mitotic stability and ploidy alterations of Leishmania chromosomes. J Biol Chem 276:11662–11673

    Article  PubMed  CAS  Google Scholar 

  • Teo CH, Ma L, Kapusi E, Hensel G, Kumlehn J, Schubert I, Houben A, Mette MF (2011) Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana. Plant J 68:28–39

    Article  PubMed  CAS  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto H, Yamada T, Sasakuma T (1997) Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proc Natl Acad Sci USA 94:3140–3144

    Article  PubMed  CAS  Google Scholar 

  • Vega JM, Yu W, Han F, Kato A, Peters EM, Zhang ZJ, Birchler JA (2008) Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors. Plant Mol Biol 66:587–598

    Article  PubMed  CAS  Google Scholar 

  • Wardrop J, Snape J, Powell W, Machray GC (2002) Constructing plant radiation hybrid panels. Plant J 31:223–228

    Article  PubMed  CAS  Google Scholar 

  • Weinthal D, Tovkach A, Zeevi V, Tzfira T (2010) Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci 15:308–321

    Article  PubMed  CAS  Google Scholar 

  • Wuebbles R, Jones PL (2007) Engineered telomeres in transgenic Xenopus laevis. Transgenic Res 16(3):377–384

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Han F, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 104:8924–8929

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci USA 103:17331–17336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Susanne Knüpffer and Cornelia Marthe for excellent technical assistance and Jim Birchler for helpful discussion. This project was supported by the Leibniz Association (WGL) in the context of the ‘Pakt für Forschung und Innovation/WGL Wettbewerb 2009–2011 Leuchtturmprojekte’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Houben.

Additional information

Communicated by Erich Nigg

Eszter Kapusi, Lu Ma and Chee How Teo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material and method 1

Sequence and annotation of T-DNA constructs (DOC 142 kb)

Supplementary Fig. 1

Transmission of truncated chromosomes in a tetraploid plant via selfing (JPEG 67 kb)

High resolution image (TIFF 79 kb)

Supplementary Fig. 2

Phenotypes of non-transformed tetraploid plants (wild-type, 4n = 28) compared to T0 (BE40/1-1; BE42/2-1) and T1 (BE47/2-11P) plants with variable chromosome numbers, including the presence or absence of truncated chromosomes. Note that plant BE47/2-11P5 shows phenotypical changes without a truncated chromosome, while plant BE47/2-11P6 shows a normal phenotype in the presence of a truncated chromosome (JPEG 113 kb)

High resolution image (TIFF 12017 kb)

Supplementary Table 1

Primers used for vector construction. The introduced restriction sites are indicated in italic (DOC 26 kb)

Supplementary Table 2

Forward and reverse primers and annealing temperature (°C) used for the identification of the various elements of the T-DNA integrated in the genome of barley plants (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapusi, E., Ma, L., Teo, C.H. et al. Telomere-mediated truncation of barley chromosomes. Chromosoma 121, 181–190 (2012). https://doi.org/10.1007/s00412-011-0351-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-011-0351-8

Keywords

Navigation