Skip to main content
Log in

Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Rice was transformed with either long DNA-segments of random genomic DNA from rice, or centromere-specific DNA sequences from either maize or rice. Despite the repetitive nature of the transgenic DNA sequences, the centromere-specific sequences were inserted largely intact and behave as simple Mendelian units. Between 4 and 5% of bombarded callus clusters were transformed when bombarded with just pCAMBIA 1305.2. Frequency of recovery dropped to 2–3% when BACs with random genomic inserts were co-bombarded with pCAMBIA, and fell to less than 1% when BACs with centromeric DNA inserts and pCAMBIA were co-bombarded. A similar effect was noted on regeneration frequency. Differences in transformation ability, regeneration and behavior of plants transgenic for BACs with random genomic DNA inserts, as compared to those with centromeric DNA inserts, suggests functional differences between these two types of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.

Similar content being viewed by others

References

  • Adam G, Mullen JA, Kindle KL (1997) Retrofitting YACs for direct DNA transfer into plant cells. Plant J 11:1349–1358

    Article  PubMed  CAS  Google Scholar 

  • Brown WRA, Mee PJ, Shen MH (2000) Artificial chromosomes: ideal vectors? Tibtech 18:218–402

    CAS  Google Scholar 

  • Chen L, Zhang S, Beachy RN, Fauquet CM (1998) A protocol for consistent, large scale production of fertile transgenic rice plants. Plant Cell Rep 18:25–31

    Article  Google Scholar 

  • Cheng ZK, Buell CR, Wing RA, Gu M, Jiang J (2001) Toward a cytological characterization of the rice genome. Genome Res 11:2133–2141

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Begum D, Koshinksy H, et al (2000) A new approach for the identification and cloning of genes: the BACwich system using Cre/lox site-specific recombination. Nucl Acid Res 28:e19-e19vii

    Article  CAS  Google Scholar 

  • Dong F, Miller JT, Jackson SA, et al (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci USA 95: 8135–8140

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ercolano MR, Ballvora A, Paal J, Steinbliss H-H, Salamini F, Gebhardt C (2004) Functional complementation analysis in potato via biolistic transformation with BAC large DNA fragments. Mol Breed 13:15–22

    Article  CAS  Google Scholar 

  • Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107–116

    Article  PubMed  CAS  Google Scholar 

  • Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93:9975–9979

    Article  PubMed  CAS  Google Scholar 

  • Hazel CB, Klein TM, Anis M, et al (1998) Growth characteristics and transformability of soybean embryogenic cultures. Plant Cell Rep 17:765–772

    Article  CAS  Google Scholar 

  • Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103:3238–3243

    Article  PubMed  CAS  Google Scholar 

  • Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of Fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41:566–572

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Jiang J, Gill BS, Wang G-L, et al (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA 92:4487–4491

    Article  PubMed  CAS  Google Scholar 

  • Kaszas E, Birchler JA (1996) Misdivision analysis of centromere structure in maize. EMBO J 15:5246–5255

    PubMed  CAS  Google Scholar 

  • Liu Y-G, Liu HM, Chen LT, et al (2002) Development of new transformation-competent artificial chromosome vectors and rice genomic libraries for efficient gene cloning. Gene 282:247–255

    Article  PubMed  CAS  Google Scholar 

  • Liu Y-G, Shirano Y, Fukaki H, et al (1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA 96:6535–6540

    Article  PubMed  CAS  Google Scholar 

  • Mullen JA, Adam G, Blowers A, Earle ED (1998) Biolistic transfer of large DNA fragments to tobacco cells using YACs retrofitted for plant transformation. Mol Breed 4:449–457

    Article  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, et al (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Song JQ, Stupar RM, et al (2003) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770

    PubMed  CAS  Google Scholar 

  • Phelps-Durr TL, Birchler JA (2004) An asymptotic determination of minimum centromere size for the maize B chromosome. Cytogen Genome Res 106:309–313

    Article  CAS  Google Scholar 

  • Richards EJ, Dawe RK (1998) Plant centromeres: structure and control. Curr Op Plant Biol 1:130–135

    Article  CAS  Google Scholar 

  • SAS Institute, Inc. 1990. SAS/Stat User’s Guide. Version 6, 4th ed. Vol. 2. SAS Institute, Inc., Cary, NC

  • Shibata D, Liu Y-G (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci 5:354–355

    Article  PubMed  CAS  Google Scholar 

  • Somerville C, Somerville S (1999) Plant functional genomics. Science 285:380–383

    Article  PubMed  CAS  Google Scholar 

  • Song J, Bradeen JM, Naess SK, et al (2003) BIBAC and TAC clones containing potato genomic DNA fragments larger than 100 kb are not stable in Agrobacterium. Theor Appl Genet 107:958–964

    Article  PubMed  CAS  Google Scholar 

  • Song R, Segal G, Messing J (2004) Expression of the sorghum 10-member kafirin gene cluster in maize endosperm. Nucl Acids Res 32:e189

    Article  PubMed  CAS  Google Scholar 

  • Van Eck JM, Blowers AD, Earle ED (1995) Stable transformation of tomato cell cultures after bombardment with plasmid and YAC DNA. Plant Cell Rep 14:299–304

    Article  Google Scholar 

  • Zhang S, Chen L, Qu R, Marmey P, Beachy R, Fauquet C (1996) Regeneration of fertile transgenic indica (group 1) rice plants following microprojectile transformation of embryogenic suspension culture cells. Plant Cell Rep 15:465–469

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by NSF grant 9975827 and by federal and state monies allocated to the Georgia Agricultural Experiment Stations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne A. Parrott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan, B.H., Jin, W., Topp, C.N. et al. Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Res 16, 341–351 (2007). https://doi.org/10.1007/s11248-006-9041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9041-3

Keywords

Navigation