Skip to main content

Advertisement

Log in

Characterization and enzymatic hydrolysis of wood from transgenic Pinus taeda engineered with syringyl lignin or reduced lignin content

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Softwood is an abundant resource; however, currently its utilization for bioconversion to obtain platform sugars is limited. Pinus taeda trees which were genetically modified to either produce S lignin or to decrease lignin content were characterized with a suite of analytic techniques. Syringyl lignin was visualized in the secondary xylem of one genetic line with Mäule staining. Solid-state nuclear magnetic resonance identified the S lignin units were coupled into the lignin through β-O-4 linkages, and thioacidolysis measured approximately 13% S lignin content in the same sample. Reductions of the lignin of as much as 33% were observed in the transgenics. To better understand how these modifications affect bioconversion, their amenability to hot water and dilute acid pretreatments and enzymatic hydrolysis was evaluated. Lignin reductions resulted in 1.9–3.2-fold increases in glucose release compared to the control. However, no apparent benefit was observed by S lignin incorporation at the concentrations reported in this study. These results highlight the potential for softwood cell wall properties to be improved for bioenergy/biochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. doi:10.1016/j.biortech.2009.11.093

    Article  CAS  Google Scholar 

  • Bardet M, Gerbaud G, Giffard M, Doan C, Hediger S, Le Pape L (2009) 13C high-resolution solid-state NMR for structural elucidation of archaeological woods. Prog Nucl Magn Reson Spectrosc 55:199–214. doi:10.1016/j.pnmrs.2009.02.001

    Article  CAS  Google Scholar 

  • Baxter HL, Mazarei M, Labbe N, Kline LM, Cheng Q, Windham MT, Mann DGJ, Fu C, Ziebell A, Sykes RW, Rodriguez M, Davis MF, Mielenz JR, Dixon RA, Wang ZY, Stewart CN (2014) Two-year field analysis of reduced recalcitrance transgenic switchgrass. Plant Biotechnol J 12:914–924. doi:10.1111/pbi.12195

    Article  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. doi:10.1146/annurev.arplant.54.031902.134938

    Article  CAS  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761. doi:10.1038/nbt1316

    Article  CAS  Google Scholar 

  • Connett-Porceddu MB, Gladfelter HJ, Gulledge JE, McCormack RR (2007) Enhanced transformation and regeneration of the transformed embryogenic pine tissue. US Patent No. US 7,157,620

  • Decker SR, Brunecky R, Tucker MP, Himmel ME, Selig MJ (2009) High-throughput screening techniques for biomass conversion. Bioenergy Res 2:179–192. doi:10.1007/s12155-009-9051-0

    Article  Google Scholar 

  • Decker SR, Sykes RW, Turner GB, Lupoi JS, Doepkke C, Tucker MP, Schuster LA, Mazza K, Himmel ME, Davis MF, Gjersing E (2015) High-throughput screening of recalcitrance variations in lignocellulosic biomass: total lignin, lignin monomers, and enzymatic sugar release. J Vis Exp. doi:10.3791/53163

    Google Scholar 

  • Duan X, Zhang C, Ju X, Li Q, Chen S, Wang J, Liu Z (2013) Effect of lignocellulosic composition and structure on the bioethanol production from different poplar lines. Bioresour Technol 140:363–367. doi:10.1016/j.biortech.2013.04.101

    Article  CAS  Google Scholar 

  • Evans RJ, Milne TA (1987) Molecular characterzation of the pyrolysis of biomass. 1. fundamentals. Energy Fuels 1:123–137. doi:10.1021/ef00002a001

    Article  CAS  Google Scholar 

  • Faix O, Meier D, Fortmann I (1990) Thermal degradation products of wood - Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived products. Holz als Roh- und Werkst 48:281–285. doi:10.1007/BF02626519

    Article  CAS  Google Scholar 

  • Foston M, Katahira R, Gjersing E, Davis MF, Ragauskas AJ (2012) Solid-state selective 13C excitation and spin diffusion NMR to resolve spatial dimensions in plant cell walls. J Agric Food Chem 60:1419–1427. doi:10.1021/jf204853b

    Article  CAS  Google Scholar 

  • Grant JE, Cooper P, Dale TM (2004) Transgenic Pinus radiata from Agrobacterium tumefaciens-mediated transformation of cotyledons. Plant Cell Rep 22:894–902. doi:10.1007/s00299-004-0769-z

    Article  CAS  Google Scholar 

  • Harman-Ware AE, Foster C, Happs RM, Doeppke C, Meunier K, Gehan J, Yue F, Lu F, Davis MF (2016) A thioacidolysis method tailored for higher-throughput quantitative analysis of lignin monomers. Biotechnol J 11:1268–1273. doi:10.1002/biot.201600266

    Article  CAS  Google Scholar 

  • Hatfield G, Maciel G, Erbatur O, Erbatur G (1987) Qualitative and quantitative analysis of solid lignin samples by carbon-13 nuclear magnetic resonance spectrometry. Anal Chem 59:172–179. doi:10.1021/ac00128a036

    Article  CAS  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812. doi:10.1038/11758

    Article  CAS  Google Scholar 

  • Iiyama K, Pant R (1988) The mechanism of the Mäule colour reaction introduction of methylated syringyl nuclei into softwood lignin. Wood Sci Technol 22:167–175. doi:10.1007/BF00355852

    Article  CAS  Google Scholar 

  • Lapierre C (2010) Determining lignin structure by chemical degradations. In: Heitner C, Dimmel DR, Schmidt JA (eds) Lignin and lignans: advances in chemistry. CRC Press, Boca Raton, pp 11–48

    Chapter  Google Scholar 

  • Li Q, Song J, Peng S, Wang JP, Qu G-Z, Sederoff RR, Chiang VL (2014) Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnol J. doi:10.1111/pbi.12273

    Google Scholar 

  • Lüdemann H-D, Nimz H (1973) Carbon-13 nuclear magnetic resonance spectra of lignins. Biochem Biophys Res Commun 52:1162–1169. doi:10.1016/0006-291X(73)90622-0

    Article  Google Scholar 

  • Manders WF (1987) Solid-state 13C NMR determination of syringyl/guaiacyl ratio in hardwoods. Holzforschung 41:13–18

    Article  CAS  Google Scholar 

  • Min D, Li Q, Jameel H, Chiang V, Chang H (2012) The cellulase-mediated saccharification on wood derived from transgenic low-lignin lines of black cottonwood (Populus trichocarpa). Appl Biochem Biotechnol 168:947–955. doi:10.1007/s12010-012-9833-2

    Article  CAS  Google Scholar 

  • Nakano J, Meshitsuka G (1992) The detection of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 23–32

    Chapter  Google Scholar 

  • NREL (2010) Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP); NREL/TP-510-42618 (Government Document). National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci USA 96:8955–8960. doi:10.1073/pnas.96.16.8955

    Article  CAS  Google Scholar 

  • Peersen OB, Wu XL, Kustanovich I, Smith SO (1993) Variable-amplitude cross-polarization MAS NMR. J Magn Reson Ser A 104:334–339. doi:10.1006/jmra.1993.1231

    Article  CAS  Google Scholar 

  • Santos RB, Lee JM, Jameel H, Chang HM, Lucia LA (2012) Effects of hardwood structural and chemical characteristics on enzymatic hydrolysis for biofuel production. Bioresour Technol 110:232–238. doi:10.1016/j.biortech.2012.01.085

    Article  CAS  Google Scholar 

  • Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA 108:6300–6305. doi:10.1073/pnas.1009252108

    Article  CAS  Google Scholar 

  • Sykes R, Yung M, Novaes E, Kirst M, Peter G, Davis M (2009) High-throughput screening of plant cell-wall composition using pyrolysis molecular beam mass spectroscopy. In: Mielenz JR (ed) Biofuels Methods And Protocols Methods in Molecular Biology. Humana Press, Totowa, pp 169–183. doi:10.1007/978-1-60761-214-8

    Google Scholar 

  • Tang W, Sederoff R, Whetten R (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213:981–989. doi:10.1007/s004250100566

    Article  CAS  Google Scholar 

  • Wadenbäck J, Von Arnold S, Egertsdotter U, Walter MH, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D (2008) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Res 17:379–392. doi:10.1007/s11248-007-9113-z

    Article  Google Scholar 

  • Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 149:370–383. doi:10.1104/pp.108.125765

    Article  CAS  Google Scholar 

  • Wagner A, Tobimatsu Y, Phillips L, Flint H, Geddes B, Lu F, Ralph J (2015) Syringyl lignin production in conifers: proof of concept in a pine tracheary element system. Proc Natl Acad Sci. doi:10.1073/pnas.1411926112

    Google Scholar 

  • Xiao L, Wei H, Himmel ME, Jameel H, Kelley SS (2014) NIR and Py-mbms coupled with multivariate data analysis as a high-throughput biomass characterization technique: a review. Front Plant Sci 5:388. doi:10.3389/fpls.2014.00388

    Article  Google Scholar 

  • Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99:3817–3828. doi:10.1016/j.biortech.2007.07.033

    Article  CAS  Google Scholar 

  • Zhu JY, Pan X, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87:847–857. doi:10.1007/s00253-010-2654-8

    Article  CAS  Google Scholar 

  • Ziebell A, Gracom K, Katahira R, Chen F, Pu YQ, Ragauskas A, Dixon RA, Davis M (2010) Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. J Biol Chem 285:38961–38968. doi:10.1074/jbc.M110.137315

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the U. S. Department of Agriculture (USDA, 87-FSTY-9-0278, NRICGP 92-37301-7593 and 95-37103-2061), the U.S. Department of Energy (DOE, DE-FG02-03ER15442), and the National Science Foundation (IBN-9118386 and DBI-0922391) to Vincent L. Chiang. We also thank support from USDA National Institute of Food and Agriculture (NIFA) National Needs Fellowship (NNF, 2012-38420-30203 to Ilona Peszlen and Perry Peralta) and DOE Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program to Charles W. Edmunds. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE (DE-AC05-06OR23100). In addition, we acknowledge the BioEnergy Science Center which is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Edmunds.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 816 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edmunds, C.W., Peralta, P., Kelley, S.S. et al. Characterization and enzymatic hydrolysis of wood from transgenic Pinus taeda engineered with syringyl lignin or reduced lignin content. Cellulose 24, 1901–1914 (2017). https://doi.org/10.1007/s10570-017-1231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1231-z

Keywords

Navigation