Skip to main content
Log in

Grafting of arginine and glutamic acid onto cellulose for enhanced uranyl sorption

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The grafting of arginine and glutamic acid on cellulose (through an intermediary step of chlorination) allows improving uranyl sorption of the biopolymer. The sorbents (Arg-Cell and Glu-Cell) were characterized by elemental analysis, FTIR spectrometry, XRD, SEM-EDX analysis and TGA. The sorption efficiency increases with pH; this can be attributed to the deprotonation of carboxylic acid and amine groups and to the formation of polynuclear hydrolyzed uranyl species. Sorption isotherms (fitted by the Langmuir equation) show sorption capacities at saturation of the monolayer of 147 and 168 mg U g−1 for Arg-Cell and Glu-Cell, respectively (compared to 78 mg U g−1 for raw cellulose); maximum sorption capacities at equilibrium (experimental values) reach 138, 160 and 73.4 for Arg-Cell, Glu-Cell and cellulose, respectively. Uranyl sorption is endothermic and is spontaneous for amino acid derivatives of cellulose (contrary to exothermic for cellulose). Uptake kinetics for the different sorbents are fitted by the pseudo-second-order rate equation. Uranium can be desorbed using sulfuric acid solutions, and the sorbents can be recycled for a minimum of five cycles of sorption/desorption: the decrease in sorption capacities at the fifth cycle does not exceed 13%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AbowSlama EHY, Ebraheem E, Sam AK (2014) Precipitation and purification of uranium from rock phosphate. J Radioanal Nucl Chem 299:815–818. doi:10.1007/s10967-013-2703-8

    Article  CAS  Google Scholar 

  • Agrawal YK, Shrivastav P, Menon SK (2000) Solvent extraction, separation of uranium (VI) with crown ether. Sep Purif Technol 20:177–183. doi:10.1016/s1383-5866(00)00110-6

    Article  CAS  Google Scholar 

  • Albert A (1952) Quantitative studies of the avidity of naturally occurring substances for trace metals. II. Amino-acids having three ionizing groups. Biochem J 50:690–697

    Article  CAS  Google Scholar 

  • Alekseeva OV, Bagrovskaya NA, Noskov AV (2015) Sorption of heavy metal ions by cellulose modified with fullerene. Russ J Appl Chem 88:436–441. doi:10.1134/s107042721503012x

    Article  CAS  Google Scholar 

  • Anirudhan TS, Sreekumari SS (2010) Synthesis and characterization of a functionalized graft copolymer of densified cellulose for the extraction of uranium(VI) from aqueous solutions. Colloids Surf A 361:180–186. doi:10.1016/j.colsurfa.2010.03.031

    Article  CAS  Google Scholar 

  • Aytas S, Turkozu DA, Gok C (2011) Biosorption of uranium(VI) by bi-functionalized low cost biocomposite adsorbent. Desalination 280:354–362. doi:10.1016/j.desal.2011.07.023

    Article  CAS  Google Scholar 

  • Baes CF Jr, Mesmer RE (1976) Hydrolysis of Cations. Wiley, NY

    Google Scholar 

  • Bai J et al (2013) Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads. J Environ Radioact 126:226–231. doi:10.1016/j.jenvrad.2013.08.010

    Article  CAS  Google Scholar 

  • Basarir SS, Bayramgil NP (2013) The uranium recovery from aqueous solutions using amidoxime modified cellulose derivatives. IV. Recovery of uranium by amidoximated hydroxypropyl methylcellulose. Cellulose 20:827–839. doi:10.1007/s10570-012-9845-7

    Article  CAS  Google Scholar 

  • Berto S, Crea F, Daniele PG, Gianguzza A, Pettignano A, Sammartano S (2012) Advances in the investigation of dioxouranium(VI) complexes of interest for natural fluids. Coord Chem Rev 256:63–81. doi:10.1016/j.ccr.2011.08.015

    Article  CAS  Google Scholar 

  • Biswas S, Rupawate VH, Hareendran KN, Roy SB, Chakravartty JK (2015) Novel precipitation technique for uranium recovery from carbonate leach solutions. J Radioanal Nucl Chem 304:1345–1351. doi:10.1007/s10967-014-3863-x

    Article  CAS  Google Scholar 

  • Cao Q, Liu Y, Kong X, Zhou L, Guo H (2013) Synthesis of phosphorus-modified poly(styrene-co-divinylbenzene) chelating resin and its adsorption properties of uranium(VI). J Radioanal Nucl Chem 298:1137–1147. doi:10.1007/s10967-013-2500-4

    Article  CAS  Google Scholar 

  • Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—Structure and characterization. Cellul Chem Technol 45:13–21

    CAS  Google Scholar 

  • Dongre VG, Janrao DM, Kamble VW (1998) Potentiometric studies on some ternary complexes of uranyl ion with pyridine carboxylic acids and some amino acids. Asian J Chem 10:730–734

    CAS  Google Scholar 

  • Donia AM, Atia AA, Moussa EMM, El-Sherif AM, El-Magied MOA (2009) Removal of uranium(VI) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy 95:183–189. doi:10.1016/j.hydromet.2008.05.037

    Article  CAS  Google Scholar 

  • Donia AM, Atia AA, Abouzayed FI (2012) Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chem Eng J 191:22–30. doi:10.1016/j.cej.2011.08.034

    Article  CAS  Google Scholar 

  • Dubinin MM, Zaverina ED, Radushkevich LV (1947) Sorption and structure of active carbons. I. Adsorption of organic vapors. Zh Fiz Khim 21:1351–1362

    CAS  Google Scholar 

  • Dubois MA, Dozol JF, Nicotra C, Serose J, Massiani C (1995) Pyrolysis and incineration of cationic and anionic ion-exchange resins - identification of volatile degradation compounds. J Anal Appl Pyrolysis 31:129–140. doi:10.1016/0165-2370(94)00817-k

    Article  CAS  Google Scholar 

  • Erkaya IA, Arica MY, Akbulut A, Bayramoglu G (2014) Biosorption of uranium(VI) by free and entrapped Chlamydomonas reinhardtii: kinetic, equilibrium and thermodynamic studies. J Radioanal Nucl Chem 299:1993–2003. doi:10.1007/s10967-014-2964-x

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. doi:10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Uber die adsorption in lasungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  • Galhoum AA, Mahfouz MG, Abdel-Rehem ST, Gomaa NA, Atia AA, Vincent T, Guibal E (2015a) Diethylenetriamine-functionalized chitosan magnetic nano-based particles for the sorption of rare earth metal ions Nd(III), Dy(III) and Yb(III). Cellulose 22:2589–2605. doi:10.1007/s10570-015-0677-0

    Article  CAS  Google Scholar 

  • Galhoum AA, Mahfouz MG, Atia AA, Abdel-Rehem ST, Gomaa NA, Vincent T, Guibal E (2015b) Amino acid functionalized chitosan magnetic nanobased particles for uranyl sorption. Ind Eng Chem Res 54:12374–12385. doi:10.1021/acs.iecr.5b03331

    Article  CAS  Google Scholar 

  • Galhoum AA, Mahfouz MG, Atia AA, Gomaa NA, Abdel-Rehem SS, Vincent T, Guibal E (2016) Alanine and serine functionalized magnetic nano-based particles for sorption of Nd(III) and Yb(III). Adv Environ Res 5:1–18. doi:10.12989/aer.2016.5.1.001

    Article  Google Scholar 

  • Gao Y, Yuan Y, Ma D, Li L, Li Y, Xu W, Tao W (2014) Removal of aqueous uranyl ions by magnetic functionalized carboxymethylcellulose and adsorption property investigation. J Nucl Mater 453:82–90. doi:10.1016/j.jnucmat.2014.06.028

    Article  CAS  Google Scholar 

  • Gharib F, Zare K, Cheraghali R (2004) Ionic strength dependence of formation constants: complexation of glutamic acid with uranium(VI) ion. Russ J Inorg Chem 49:949–954

    Google Scholar 

  • Gharib F, Shamel A, Lotfi F (2005) Ionic strength dependence of formation constants, complexation of glycine with dioxouranium(VI) ion. Rev Inorg Chem 25:361–371

    CAS  Google Scholar 

  • Gianguzza A, Pettignano A, Sammartano S (2005) Interaction of the dioxouranium(VI) ion with aspartate and glutamate in NaCl(aq) at different ionic strengths. J Chem Eng Data 50:1576–1581. doi:10.1021/je050040o

    Article  CAS  Google Scholar 

  • Gok C, Aytas S (2009) Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. J Hazard Mater 168:369–375. doi:10.1016/j.jhazmat.2009.02.063

    Article  CAS  Google Scholar 

  • Guibal E, Roulph C, Lecloirec P (1992) Uranium biosorption by a filamentous fungus Mucor miehei: pH effect on mechanisms and performances of uptake. Water Res 26:1139–1145. doi:10.1016/0043-1354(92)90151-s

    Article  CAS  Google Scholar 

  • Guibal E, Saucedo I, Jansson Charrier M, Delanghe B, Lecloirec P (1994) Uranium and vanadium sorption by chitosan and derivatives. Water Sci Technol 30:183–190

    CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. doi:10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  • Kabay N, Demircioglu M, Yayli S, Gunay E, Yuksel M, Saglam M, Streat M (1998) Recovery of uranium from phosphoric acid solutions using chelating ion-exchange resins. Ind Eng Chem Res 37:1983–1990. doi:10.1021/ie970518k

    Article  CAS  Google Scholar 

  • Karve M, Pandey K (2012) Sorption studies of U(VI) on Amberlite XAD-2 resin impregnated with Cyanex272. J Radioanal Nucl Chem 293:783–787. doi:10.1007/s10967-012-1726-x

    Article  CAS  Google Scholar 

  • Kausar A, Bhatti HN, MacKinnon G (2013) Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste. Colloids Surf B 111:124–133. doi:10.1016/j.colsurfb.2013.05.028

    Article  CAS  Google Scholar 

  • Kelly SD, Kemner KM, Fein JB, Fowle DA, Boyanov MI, Bunker BA, Yee N (2002) X-ray absorption fine structure determination of pH-dependent U-bacterial cell wall interactions. Geochim Cosmochim Acta 66:3855–3871. doi:10.1016/s0016-7037(02)00947-x

    Article  CAS  Google Scholar 

  • Kilislioglu A, Bilgin B (2003) Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin. Appl Radiat Isot 58:155–160. doi:10.1016/s0969-8043(02)00316-0

    Article  CAS  Google Scholar 

  • Kremleva A, Krueger S, Roesch N (2009) Role of aliphatic and phenolic hydroxyl groups in uranyl complexation by humic substances. Inorg Chim Acta 362:2542–2550. doi:10.1016/j.ica.2008.11.021

    Article  CAS  Google Scholar 

  • Krestou A, Pania D (2004) Uranium(VI) speciation diagrams in the UO2 2+/CO3 2−/H2O system at 25 °C. Eur J Miner Process Environ Prot 4:113–129

    Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Sven Vetenskapsakademiens 24:1–39

    Google Scholar 

  • Lagrange P, Schneider M, Lagrange J (1998) Complexes of oxovanadium(IV), dioxovanadium(V) and dioxouranium(VI) with aminoacids in aqueous solution. J Chim Phys Phys- Chim Biol 95:2280–2299

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1402

    Article  CAS  Google Scholar 

  • Lin W, Carboni M, Abney CW, Taylor-Pashow KML, Vivero-Escoto JL (2013) Uranium sorption with functionalized mesoporous carbon materials. Ind Eng Chem Res 52:15187–15197. doi:10.1021/ie402646r

    Article  Google Scholar 

  • Ma HY, Hsiao BS, Chu B (2012) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO2 2+ in water. ACS Macro Lett 1:213–216. doi:10.1021/mz200047q

    Article  CAS  Google Scholar 

  • Mahfouz MG, Galhoum AA, Gomaa NA, Abdel-Rehem SS, Atia AA, Vincent T, Guibal E (2015) Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: equilibrium and kinetic studies. Chem Eng J 262:198–209. doi:10.1016/j.cej.2014.09.061

    Article  CAS  Google Scholar 

  • Mansour RA, El-Menshawy AM, Eldesoky AM (2015) Separation of uranyl ion from different media using a new cellulose hydrazone: adsorption isotherms, kinetic and thermodynamic studies. Int J Adv Res 3:966–980

    Google Scholar 

  • Marczenko Z (1976) Spectrophotometric determination of elements. Ellis Horwood series in analytical chemistry. Ellis Horwood, Chichester

    Google Scholar 

  • Metilda P, Sanghamitra K, Gladis JM, Naidu GRK, Rao TP (2005) Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium(VI). Talanta 65:192–200. doi:10.1016/j.talanta.2004.06.005

    CAS  Google Scholar 

  • Monier M, Abdel-Latif DA (2013) Synthesis and characterization of ion-imprinted resin based on carboxymethyl cellulose for selective removal of UO2 2+. Carbohydr Polym 97:743–752. doi:10.1016/j.carbpol.2013.05.062

    Article  CAS  Google Scholar 

  • Naduparambath S, Purushothaman E (2016) Sago seed shell: determination of the composition and isolation of microcrystalline cellulose (MCC). Cellulose 23:1803–1812. doi:10.1007/s10570-016-0904-3

    Article  CAS  Google Scholar 

  • Nie X-Q, Dong F-Q, Liu N, Zhang D, Liu M-X, Yang J, Zhang W (2015) Biosorption and biomineralization of uranium(VI) from aqueous solutions by Landoltia punctata. SpectroscSpectral Anal 35:2613–2619. doi:10.3964/j.issn.1000-0593(2015)09-2613-07

  • Petitramel MM, Mosoni L (1982) Stability and visible absorption of glutamic-acid complexes with uranyl and neodymium ions. Fresenius Z Anal Chem 313:544–547. doi:10.1007/bf00493679

    Article  CAS  Google Scholar 

  • Peyvandi S, Faghihian H (2014) Biosorption of uranyl ions from aqueous solution by Saccharomyces cerevisiae cells immobilized on clinoptilolite. J Radioanal Nucl Chem 301:537–543. doi:10.1007/s10967-014-3184-0

    Article  CAS  Google Scholar 

  • Rahmani-Sani A, Hosseini-Bandegharaei A, Hosseini SH, Kharghani K, Zarei H, Rastegar A (2015) Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid. J Hazard Mater 286:152–163. doi:10.1016/j.jhazmat.2014.12.047

    Article  CAS  Google Scholar 

  • Rahmati A, Ghaemi A, Samadfam M (2012) Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin. Ann Nucl Energy 39:42–48. doi:10.1016/j.anucene.2011.09.006

    Article  CAS  Google Scholar 

  • Ramanujam VV, Rengaraj K, Sivasankar B (1979) Studies on uranyl complexes. II. Unidentate carboxylate coordination in uranyl complexes of alpha-, beta;-, and gamma-amino acids: a polarographic study. Bull Chem Soc Jpn 52:2713–2716. doi:10.1246/bcsj.52.2713

    Article  CAS  Google Scholar 

  • Say R, Erosz A, Denizli A (2003) Selective separation of uranium containing glutamic acid molecular-imprinted polymeric microbeads. Sep Sci Technol 38:3431–3447. doi:10.1081/ss-120023407

    Article  CAS  Google Scholar 

  • Sebe G, Ham-Pichavant F, Ibarboure E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578. doi:10.1021/bm201777j

    Article  CAS  Google Scholar 

  • Semnani F, Asadi Z, Samadfam M, Sepehrian H (2012) Uranium(VI) sorption behavior onto amberlite CG-400 anion exchange resin: effects of pH, contact time, temperature and presence of phosphate. Ann Nucl Energy 48:21–24. doi:10.1016/j.anucene.2012.05.010

    Article  CAS  Google Scholar 

  • Sharma PR, Varma AJ (2014) Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups. Carbohydr Polym 114:339–343. doi:10.1016/j.carbpol.2014.08.032

    Article  CAS  Google Scholar 

  • Silva Filho EC, Lima LCB, Silva FC, Sousa KS, Fonseca MG, Santana SAA (2013a) Immobilization of ethylene sulfide in aminated cellulose for removal of the divalent cations. Carbohydr Polym 92:1203–1210. doi:10.1016/j.carbpol.2012.10.031

    Article  CAS  Google Scholar 

  • Silva Filho EC, Santos Junior LS, Fernandes Silva MM, Fonseca MG, Abreu Santana SA, Airoldi C (2013b) Surface cellulose modification with 2-aminomethylpyridine for copper, cobalt, nickel and zinc removal from aqueous solution. Mater Res Ibero-Am J Mater 16:79–87. doi:10.1590/s1516-14392012005000147

    CAS  Google Scholar 

  • Singer DM, Guo H, Davis JA (2014) U(VI) and Sr(II) batch sorption and diffusion kinetics into mesoporous silica (MCM-41). Chem Geol 390:152–163. doi:10.1016/j.chemgeo.2014.10.027

    Article  CAS  Google Scholar 

  • Singh KK, Pathak SK, Kumar M, Mahtele AK, Tripathi SC, Bajaj PN (2013) Study of uranium sorption using D2EHPA-impregnated polymeric beads. J Appl Polym Sci 130:3355–3364. doi:10.1002/app.39582

    Article  CAS  Google Scholar 

  • Solgy M, Taghizadeh M, Ghoddocynejad D (2015) Adsorption of uranium(VI) from sulphate solutions using Amberlite IRA-402 resin: equilibrium, kinetics and thermodynamics study. Ann Nucl Energy 75:132–138. doi:10.1016/j.anucene.2014.08.009

    Article  CAS  Google Scholar 

  • Stopa LCB, Yamaura M (2010) Uranium removal by chitosan impregnated with magnetite nanoparticles: adsorption and desorption. Int J Nucl Energy Sci Technol 5:283–289

    Article  CAS  Google Scholar 

  • Sun X, Yang L, Li Q, Zhao J, Li X, Wang X, Liu H (2014) Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): synthesis and adsorption studies. Chem Eng J 241:175–183. doi:10.1016/j.cej.2013.12.051

    Article  CAS  Google Scholar 

  • Sun Y, Zhang R, Ding C, Wang X, Cheng W, Chen C, Wang X (2016) Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim Cosmochim Acta 180:51–65. doi:10.1016/j.gca.2016.02.012

    Article  CAS  Google Scholar 

  • Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72. doi:10.1016/j.jhazmat.2010.07.119

    Article  CAS  Google Scholar 

  • Tan L et al (2015) Synthesis of Fe3O4@TiO2 core-shell magnetic composites for highly efficient sorption of uranium (VI). Colloids Surf A 469:279–286. doi:10.1016/j.colsurfa.2015.01.040

    Article  CAS  Google Scholar 

  • Tashiro T, Shimura Y (1982) Removal of mercuric ions by systems based on cellulose derivatives. J Appl Polym Sci 27:747–756. doi:10.1002/app.1982.070270235

    Article  CAS  Google Scholar 

  • Včeláková K, Zusková I, Kenndler E, Gaš B (2004) Determination of cationic mobilities and pKa values of 22 amino acids by capillary zone electrophoresis. Electrophoresis 25:309–317. doi:10.1002/elps.200305751

    Article  Google Scholar 

  • Wang GH, Liu JS, Wang XG, Xie ZY, Deng NS (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058. doi:10.1016/j.jhazmat.2009.02.157

    Article  CAS  Google Scholar 

  • Yousif AM, El-Afandy AH, Wahab GMA, Mubark AE, Ibrahim IA (2015) Selective separation of uranium(VI) from aqueous solutions using amine functionalized cellulose. J Radioanal Nucl Chem 303:1821–1833. doi:10.1007/s10967-014-3688-7

    CAS  Google Scholar 

  • Zagorodnyaya AN, Abisheva ZS, Sharipova AS, Sadykanova SE, Bochevskaya YG, Atanova OV (2013) Sorption of rhenium and uranium by strong base anion exchange resin from solutions with different anion compositions. Hydrometallurgy 131:127–132. doi:10.1016/j.hydromet.2012.11.003

    Article  Google Scholar 

  • Zhou L, Shang C, Liu Z, Huang G, Adesina AA (2012) Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interface Sci 366:165–172. doi:10.1016/j.jcis.2011.09.069

    Article  CAS  Google Scholar 

  • Zhou Y, Wang X, Zhang M, Jin Q, Gao B, Ma T (2014) Removal of Pb(II) and malachite green from aqueous solution by modified cellulose. Cellulose 21:2797–2809. doi:10.1007/s10570-014-0282-7

    Article  CAS  Google Scholar 

  • Zhu ZW, Pranolo Y, Cheng CY (2016) Uranium recovery from strong acidic solutions by solvent extraction with Cyanex 923 and a modifier. Miner Eng 89:77–83. doi:10.1016/j.mineng.2016.01.016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financilally supported by the Nuclear Materials Authority, Egypt. The article is specially dedication to the memory of Prof. Dr. Ahmed Donia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Guibal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bohy, M.N., Abdel-Monem, Y.K., Rabie, K.A. et al. Grafting of arginine and glutamic acid onto cellulose for enhanced uranyl sorption. Cellulose 24, 1427–1443 (2017). https://doi.org/10.1007/s10570-017-1193-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1193-1

Keywords

Navigation