Skip to main content
Log in

Biosorption of uranyl ions from aqueous solution by Saccharomyces cerevisiae cells immobilized on clinoptilolite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study deals with the uptake of uranyl ions from aqueous solution using bio-modified natural clinoptilolite. The biosorption experiments were carried out in a batch system. Cell immobilization process and sorption of uranyl ions were confirmed by scanning electron microscopy and inductively coupled plasma-optical emission spectroscopy techniques, respectively. The adsorption equilibrium was reached in 4 h, the optimum pH was 4.5 and the temperature had no significant effect on the uranyl biosorption. The experimental data were well fitted with Langmuir isotherm and pseudo-second-order kinetic models. The maximum sorption capacity of cell immobilized clinoptilolite was 0.148 mmol (\( {\text{UO}}_{2}^{2 + } \)) g−1 dry sorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78:967

    CAS  Google Scholar 

  2. Abbasi SA, Abbasi N, Soni R (1998) Heavy metals in the environment. Mittal Publications, New Delhi

    Google Scholar 

  3. Laul JC (1992) Natural radionuclides in groundwaters. J Radioanal Nucl Chem 156:235–242

    Article  CAS  Google Scholar 

  4. Yang J, Volesky B (1999) Modeling uranium-proton ion exchange in biosorption. Environ Sci Technol 33:4079–4085

    Article  CAS  Google Scholar 

  5. Sarri S, Misaelides P, Papanikolaou M, Zamboulis D (2009) Uranium removal from acidic aqueous solutions by Saccharomyces cerevisiae, Debaryomyces hansenii, Kluyveromyces marxianus and Candida colliculosa. J Radioanal Nucl Chem 279:709–711

    Article  CAS  Google Scholar 

  6. Faghihian H, Peyvandi S (2012) Adsorption isotherm for uranyl biosorption by Saccharomyces cerevisiae biomass. J Radioanal Nucl Chem 293:463–468

    Article  CAS  Google Scholar 

  7. Akgül M, Karabakan A, Acar O, Yürüm Y (2006) Removal of silver(I) from aqueous solutions with clinoptilolite. Microporous Mesoporous Mater 94:99–104

    Article  Google Scholar 

  8. Matheickal JT, Yu Q (1999) Biosorption of lead(II) and copper(II) from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresour Technol 69:223–229

    Article  CAS  Google Scholar 

  9. Salehi P, Asghari B, Mohammadi F (2008) Removal of heavy metals from aqueous solutions by Cercis siliquastrum L. J Iran Chem Soc 5:S80–S86

    Article  CAS  Google Scholar 

  10. Kazemian H, Mallah MH (2006) Elimination of Cd2+ and Mn2+ from wastewaters using natural clinoptilolite and synthetic zeolite P. Iran J Chem Chem Eng 25:92

    Google Scholar 

  11. Grant DC, Skriba MC, Saha AK (1987) Removal of radioactive contaminants from West Valley waste streams using natural zeolites. Environ Prog 6:104–109

    Article  CAS  Google Scholar 

  12. Naja GM, Volesky B (2011) In: Kotrba P, Mackova M, Macek T (eds) Microbial biosorption of metals. Springer, Berlin

    Google Scholar 

  13. Nakajima A, Horikoshi T, Sakaguchi T (1982) Recovery of uranium by immobilized microorganisms. Eur J Appl Microb Biotechnol 16:88–91

    Article  CAS  Google Scholar 

  14. Shindo S, Takata S, Taguchi H, Yoshimura N (2001) Development of novel carrier using natural zeolite and continuous ethanol fermentation with immobilized Saccharomyces cerevisiae in a bioreactor. Biotechnol Lett 23:2001–2004

    Article  CAS  Google Scholar 

  15. Omar NB, Merroun ML, Gonzalez-Muiioz MT, Arias JM (1996) Brewery yeast as a biosorbent for uranium. J Appl Bacteriol 81:283–287

    Article  CAS  Google Scholar 

  16. Volesky B (2003) Sorption and biosorption. BV Sorbex, Inc., Montreal-St. Lambert

    Google Scholar 

  17. Dhankhar R, Hooda A, Solanki R, Sainger PA (2011) Saccharomyces cerevisiae: a potential biosorbent for biosorption of uranium. Int J Eng Sci Technol 3:5397–5407

    Google Scholar 

  18. Prakasham RS, Merrie J, Sheela R, Saswathi N, Ramakrishna SV (1999) Biosorption of chromium VI by free and immobilized Rhizopus arrhizus. Environ Pollut 104:421–427

    Article  CAS  Google Scholar 

  19. Abuhl MA, Akpomie GK, Nwagbara NK, Abia Bassey N, Ape DI, Ayabie BU (2013) Kinetic rate equations application on the removal of copper(II) and zinc(II) by unmodified lignocellulosic fibrous layer of palm tree trunk-single component system studies. Int J Basic Appl Sci 1:800–809

    Google Scholar 

  20. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  21. Ho YS, Ng JCY, McKay G (2000) Kinetics of pollutant sorption by biosorbents: review. Sep Purif Method 29:189–232

    Article  CAS  Google Scholar 

  22. Yang J, Volesky B (1999) Removal and concentration of uranium by seaweed biosorbent. Process Metall 9:483–492

    Article  Google Scholar 

  23. Zhou JL (1999) Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biotechnol 51:686–693

    Article  CAS  Google Scholar 

  24. Donat R, Cilgi GK, Aytas S, Cetisli H (2009) Thermodynamic parameters and sorption of U(VI) on ACSD. J Radioanal Nucl Chem 279:271–280

    Article  CAS  Google Scholar 

  25. Pang C, Liu Y, Cao X, Hua R, Wang C, Li C (2010) Adsorptive removal of uranium from aqueous solution using chitosan-coated attapulgite. J Radioanal Nucl Chem 286:185–193

    Article  CAS  Google Scholar 

  26. Konstantinou M, Pashalidis I (2007) Adsorption of hexavalent uranium on biomass by-product. J Radioanal Nucl Chem 273:549–552

    Article  CAS  Google Scholar 

  27. Zouboulis AI, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916

    Article  CAS  Google Scholar 

  28. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  29. Freundlich H (1907) Ueber die adsorption in loesungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  30. Sar P, Kazy SK, D’Souza SF (2004) Radionuclide remediation using a bacterial biosorbent. Int Biodeterior Biodegrad 54:193–202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shima Peyvandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyvandi, S., Faghihian, H. Biosorption of uranyl ions from aqueous solution by Saccharomyces cerevisiae cells immobilized on clinoptilolite. J Radioanal Nucl Chem 301, 537–543 (2014). https://doi.org/10.1007/s10967-014-3184-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3184-0

Keywords

Navigation