Skip to main content
Log in

A microstructurally based continuum model of cartilage viscoelasticity and permeability incorporating measured statistical fiber orientations

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The remarkable mechanical properties of cartilage derive from an interplay of isotropically distributed, densely packed and negatively charged proteoglycans; a highly anisotropic and inhomogeneously oriented fiber network of collagens; and an interstitial electrolytic fluid. We propose a new 3D finite strain constitutive model capable of simultaneously addressing both solid (reinforcement) and fluid (permeability) dependence of the tissue’s mechanical response on the patient-specific collagen fiber network. To represent fiber reinforcement, we integrate the strain energies of single collagen fibers—weighted by an orientation distribution function (ODF) defined over a unit sphere—over the distributed fiber orientations in 3D. We define the anisotropic intrinsic permeability of the tissue with a structure tensor based again on the integration of the local ODF over all spatial fiber orientations. By design, our modeling formulation accepts structural data on patient-specific collagen fiber networks as determined via diffusion tensor MRI. We implement our new model in 3D large strain finite elements and study the distributions of interstitial fluid pressure, fluid pressure load support and shear stress within a cartilage sample under indentation. Results show that the fiber network dramatically increases interstitial fluid pressure and focuses it near the surface. Inhomogeneity in the tissue’s composition also increases fluid pressure and reduces shear stress in the solid. Finally, a biphasic neo-Hookean material model, as is available in commercial finite element codes, does not capture important features of the intra-tissue response, e.g., distributions of interstitial fluid pressure and principal shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdullah OM, Othman SF, Zhou XJ, Magin RL (2007) Diffusion tensor imaging as an early marker for osteoarthritis. In: Proceedings of the international society for magnetic resonance in medicine 2007, p 814

  • Alexander AL, Hasan KM, Lazar M, Tsuruda JS, Parker DL (2001) Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med 45:770–780

    Article  Google Scholar 

  • Arsigny V, Fillard P, Pennec X, Ayache N (2006) Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J Matrix Anal Appl 29:328–347

    Article  MathSciNet  MATH  Google Scholar 

  • Ateshian GA, Chahine NO, Basalo IM, Hung CT (2004) The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage. J Biomech 37:391–400

    Article  Google Scholar 

  • Ateshian GA, Rajan V, Chahine NO, Canal CE, Hung CT (2009) Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng 131:61003

    Article  Google Scholar 

  • Ateshian GA, Wang H, Lai WM (1998) The role of interstitial fluid pressurization and surface porosities on the boundary friction of articular cartilage. J Tribol ASME 120:241–251

    Article  Google Scholar 

  • Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC (1997) Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech 30:1157–1164

    Article  Google Scholar 

  • Athanasiou KA, Darling EM, Hu JC (eds) (2010) Articular cartilage tissue engineering. Morgan & Claypool, San Rafael

    Google Scholar 

  • Bachrach NM, Mow VC, Guilak F (1998) Incompressibility of the solid matrix of articular cartilage under high hydrostatic pressures. J Biomech 31:445–451

    Article  Google Scholar 

  • Bader DL, Salter DM, Chowdhury TT (2011) Biomechanical influence of cartilage homeostasis in health and disease. Arthritis 2011. doi:10.1155/2011/979032

  • Bae WC, Lewis CW, Levenston ME, Sah RL (2006) Indentation testing of human articular cartilage: effects of probe tip geometry and indentation depth on intra-tissue strain. J Biomech 39:1039–1047

    Article  Google Scholar 

  • Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    Article  Google Scholar 

  • Basser PJ, Schneiderman R, Bank RA, Wachtel E, Maroudas A (1998) Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch Biochem Biophys 351:207–219

    Article  Google Scholar 

  • Bažant ZP, Oh BH (1986) Efficient numerical integration on the surface of a sphere. Z Angew Math Mech 66:37–49

    Article  MathSciNet  MATH  Google Scholar 

  • Bishop AW (1959) The principle of effective stress. Tek Ukeblad 39:859–863

    Google Scholar 

  • Bluhm J (2002) Modelling of saturated thermo-elastic porous solids with different phase temperatures. In: Ehlers W, Bluhm J (eds) Porous media: theory, experiments and numerical applications. Springer, Berlin, pp 87–120

    Chapter  Google Scholar 

  • Bowen RM (1980) Incompressible porous media models by use of theory of mixtures. Int J Eng Sci 18:1129–1148

    Article  MATH  Google Scholar 

  • Bowen RM (1982) Compressible porous media models by use of the theory of mixtures. Int J Eng Sci 20:697–735

    Article  MATH  Google Scholar 

  • Chahine NO, Wang CC, Hung CT, Ateshian GA (2004) Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression. J Biomech 37:1251–1261

    Article  Google Scholar 

  • Charlebois M, McKee MD, Buschmann MD (2004) Nonlinear tensile properties of bovine articular cartilage and their variation with age and depth. J Biomech Eng 126:129–137

    Article  Google Scholar 

  • Chen AC, Bae WC, Schinagl RM, Sah RL (2001) Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression. J Biomech 34:1–12

    Article  Google Scholar 

  • Clark JM, Simonian PT (1997) Scanning electron microscopy of “fibrillated” and “malacic” human articular cartilage: technical considerations. Microsc Res Tech 37:299–313

    Article  Google Scholar 

  • de Boer R (2000) Theory of porous media. Highlights in the historical development and current state. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • de Visser SK, Crawford RW, Pope JM (2008a) Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging. Osteoarthr Cartil 16:83–89

    Article  Google Scholar 

  • de Visser SK, Bowden JC, Wentrup-Bryne E, Rintoul L, Bostrom T, Pope JM, Momot KI (2008b) Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements. Osteoarthr Cartil 16:689–697

    Article  Google Scholar 

  • DiSilvestro MR, Suh JKF (2001) A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J Biomech 34:519–525

    Article  Google Scholar 

  • Ehlers W (1989) Poröse Medien–ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Ph.D. thesis. Universität GH Essen. Forschungsbericht aus dem Fachbereich Bauwesen 47

  • Ehlers W (1993) Constitutive equations for granular materials in geomechanical context. In: Hutter K (ed) Continuum mechanics in environmental sciences and geophysics. Springer, Wien, pp 313–402. CISM Courses and Lectures no. 337

  • Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J (eds) Porous media: theory. Experiments and numerical applications, Springer, Berlin, pp 3–86

    Chapter  Google Scholar 

  • Eipper G (1998) Theorie und Numerik finiter elastischer Deformationen in fluidgesättigten porösen Festkörpern. Ph.D. thesis. Universität Stuttgart. Bericht Nr. II-1 aus dem Institut für Mechanik (Bauwesen)

  • Federico S, Gasser TC (2010) Nonlinear elasticity of biological tissues with statistical fibre orientation. J R Soc Interface 7:955–966

    Article  Google Scholar 

  • Federico S, Grillo A (2012) Elasticity and permeability of porous fibre reinforced materials under large deformations. Mech Mater 44:58–71

    Article  Google Scholar 

  • Federico S, Herzog W (2008) On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech Model Mechanobiol 7:367–378

    Article  Google Scholar 

  • Fernandez M, Jambawalikar S, Myers K (2014) Toward quantitative biomarkers of cervical structural health: development of mri tools for in-vivo mechanical property measurement. In: Proceedings of the international society for magnetic resonance in medicine, p 2217

  • Filidoro L, Dietrich O, Weber J, Rauch E, Oether T, Wick M, Reiser MF, Glaser C (2005) High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings. Magn Reson Med 53:993–998

    Article  Google Scholar 

  • García JJ, Cortés DH (2007) A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data. J Biomech 40:1737–1744

    Article  Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35

    Article  Google Scholar 

  • Hascall VC (1977) Interaction of cartilage proteoglycans with hyaluronic acid. J Supramol Struct 7:101–120

    Article  Google Scholar 

  • Herrmann LR, Peterson FE (1968) A numerical procedure for viscoelastic stress analysis. In: Proceedings 7th meeting of ICRPG mechanical behavior working group, Orlando

  • Holzapfel GA (1996) On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int J Numer Methods Eng 39:3903–3926

    Article  MATH  Google Scholar 

  • Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190:4379–4403

    Article  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Unterberger MJ, Ogden RW (2014) An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins. J Mech Behav Biomed Mater 38:78–90

    Article  Google Scholar 

  • Huang CY, Mow VC, Ateshian GA (2001) The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J Biomech Eng 123:410–417

    Article  Google Scholar 

  • Huang CY, Stankiewicz A, Ateshian GA, Mow VC (2005) Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation. J Biomech 38:799–809

    Article  Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics. Cells, tissues, and organs. Springer, New York

    Book  Google Scholar 

  • Jurvelin JS, Buschmann MD, Hunziker EB (1997) Optical and mechanical determination of Poisson’s ratio of adult bovine humeral articular cartilage. J Biomech 30:235–241

    Article  Google Scholar 

  • Krishnan R, Park S, Echstein F, Ateshian GA (2003) Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress. J Biomech Eng 125:569–577

    Article  Google Scholar 

  • Lei F, Szeri AZ (2006) The influence of fibril organization on the mechanical behaviour of articular cartilage. Proc R Soc Lond A 462:3301–3322

    Article  MathSciNet  MATH  Google Scholar 

  • Li LP, Herzog W (2004) The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation. Biorheology 41:181–194

    Google Scholar 

  • Maas SA, Ellis BJ, Ateshian GA, Weiss JA (2012) FEBio: finite elements for biomechanics. J Biomech Eng 134:011005

    Article  Google Scholar 

  • Meder R, de Visser SK, Bowden JC, Bostrom T, Pope JM (2006) Diffusion tensor imaging of articular cartilage as a measure of tissue microstructure. Osteoarthr Cartil 14:875–881

    Article  Google Scholar 

  • Miehe C, Göktepe S (2005) A micromacro approach to rubber-like materials—part II: the micro-sphere model of finite rubber viscoelasticity. J Mech Phys Solids 53:2231–2258

    Article  MathSciNet  MATH  Google Scholar 

  • Miehe C, Göktepe S, Lulei F (2004) A micro-macro approach to rubber-like materials—part I: the non-affine micro-sphere model of rubber elasticity. J Mech Phys Solids 52:2617–2660

    Article  MathSciNet  MATH  Google Scholar 

  • Mow VC, Gu WY, Chen FH (2005) Structure and function of articular cartilage and meniscus. In: Mow VC, Huiskes R (eds) Basic orthopaedic biomechanics & mechano-biology, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 181–258

    Google Scholar 

  • Muir H (1983) Proteoglycans as organizers of the intercellular matrix. Biochem Soc Trans 11:613–622

    Article  Google Scholar 

  • Park S, Krishnan R, Nicoll SB, Ateshian GA (2003) Cartilage interstitial fluid load support in unconfined compression. J Biomech 36:1785–1796

    Article  Google Scholar 

  • Pence TJ (2012) On the formulation of boundary value problems with the incompressible constituents constraint in finite deformation poroelasticity. Math Methods Appl Sci 35:1756–1783

    Article  MathSciNet  MATH  Google Scholar 

  • Pierce DM, Ricken T, Holzapfel GA (2013a) A hyperelastic biphasic fiber-reinforced model of articular cartilage considering distributed collagen fiber orientations: continuum basis, computational aspects and applications. Comput Methods Biomech Biomed Eng 16:1344–1361

    Article  Google Scholar 

  • Pierce DM, Ricken T, Holzapfel GA (2013b) Modeling sample/patient-specific structural and diffusional response of cartilage using DT-MRI. Int J Numer Methods Biomed Eng 29:807–821

    Article  Google Scholar 

  • Pierce DM, Trobin W, Raya JG, Trattnig S, Bischof H, Glaser C, Holzapfel GA (2010) DT-MRI based computation of collagen fiber deformation in human articular cartilage: a feasibility study. Ann Biomed Eng 38:2447–2463

    Article  Google Scholar 

  • Pierce DM, Trobin W, Trattnig S, Bischof H, Holzapfel GA (2009) A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking. J Biomech Eng 131:091006

    Article  Google Scholar 

  • Price WS (2009) NMR studies of translational motion: principles and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Raya JG, Melkus G, Adam-Neumair S, Dietrich O, Mützel E, Kahr B, Reiser MF, Jakob PM, Putz R, Glaser C (2011) Change of diffusion tensor imaging parameters in articular cartilage with progressive proteoglycan extraction. INVRAD 46:401–409

    Google Scholar 

  • Raya JG, Melkus G, Adam-Neumair S, Dietrich O, Mützel E, Reiser MF, Putz R, Kirsch T, Jakob PM, Glaser C (2013) Diffusion-tensor imaging of human articular cartilage specimens with early signs of cartilage damage. RADIO 266:831–841

    Article  Google Scholar 

  • Ricken T, Bluhm J (2010) Remodeling and growth of living tissue: a multiphase theory. Arch Appl Mech 80:453–465

    Article  MATH  Google Scholar 

  • Sáez P, Alastrué V, Peña E, Doblaré M, Martínez M (2012) Anisotropic microsphere-based approach to damage in soft fibered tissue. Biomech Model Mechanobiol 11:595–608

    Article  Google Scholar 

  • Sarntinoranont M, Chen X, Zhao J, Mareci TH (2006) Computational model of interstitial transport in the spinal cord using diffusion tensor imaging. Ann Biomed Eng 34:1304–1321

    Article  Google Scholar 

  • Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60:153–173

    Article  MathSciNet  MATH  Google Scholar 

  • Simo JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46:201–215

    Article  MATH  Google Scholar 

  • Skempton AW (1960) Terzaghi’s discovery of effective stress. In: Bjerrum L, Casagrande A, Peck RB, Skempton AW (eds) From theory to practice in soil mechanics. Wiley, New York, pp 42–53

    Google Scholar 

  • Smith RL, Carter DR, Schurman DJ (2004) Pressure and shear differentially alter human articular chondrocyte metabolism: a review. Clin Orthop Relat Res 427(Suppl):S89–95

    Google Scholar 

  • Smith RL, Trindade MCD, Ikenoue T, Mohtai M, Das P, Carter DR, Goodman SB, Schurman DJ (2000) Effects of shear stress on articular chondrocyte metabolism. Biorheology 37:95–107

    Google Scholar 

  • Soltz MA, Ateshian GA (1998) Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J Biomech 31:927–934

    Article  Google Scholar 

  • Soltz MA, Ateshian GA (2000) A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. J Biomech Eng 122:576–586

    Article  Google Scholar 

  • Sun YL, Luo ZP, Fertala A, An KA (2002) Direct quantification of the flexibility of type I collagen monomer. Biochem Biophys Res Commun 295:382–386

    Article  Google Scholar 

  • Taffetani M, Griebel M, Gastaldi D, Klisch SM, Vena P (2014) Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage. J Mech Behav Biomed Mater 32:17–30

    Article  Google Scholar 

  • Taylor RL, Pister KS, Goudreau GL (1970) Thermomechanical analysis of viscoelastic solids. Int J Numer Methods Eng 2:45–59

    Article  MATH  Google Scholar 

  • Tomic A, Grillo A, Federico S (2014) Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage. IMA J Appl Math 79:1027–1059

    Article  MathSciNet  MATH  Google Scholar 

  • Topol H, Demirkoparan H, Pence TJ, Wineman A (2014) A theory for deformation dependent evolution of continuous fibre distribution applicable to collagen remodelling. IMA J Appl Math 79:947–977

    Article  MathSciNet  MATH  Google Scholar 

  • Tuch DS (2004) Q-ball imaging. Magn Reson Med 52:1358–1372

    Article  Google Scholar 

  • Wang P, Zhu F, Konstantopoulos K (2010a) Prostaglandin E2 induces interleukin-6 expression in human chondrocytes via cAMP/protein kinase A- and phosphatidylinositol 3-kinase-dependent NF-kappaB activation. Am J Physiol Cell Physiol 298:1445–1456

    Article  Google Scholar 

  • Wang P, Zhu F, Lee NH, Konstantopoulos K (2010b) Shear-induced interleukin-6 synthesis in chondrocytes: roles of E prostanoid (EP) 2 and EP3 in cAMP/protein kinase A- and PI3-K/Akt-dependent NF-kappaB activation. J Biol Chem 285:24793–24804

    Article  Google Scholar 

  • Wilson W, Huyghe JM, van Donkelaar CC (2007) Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech Model Mechanobiol 6(1–2):43–53

    Article  Google Scholar 

  • Wong M, Ponticiello M, Kovanen V, Jurvelin JS (2000) Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J Biomech 33:1049–1054

    Article  Google Scholar 

  • Zhu F, Wang P, Lee NH, Goldring MB, Konstantopoulos K (2010) Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. PLoS One 5:E15174

    Article  Google Scholar 

  • Zhu WB, Lai WM, Mow VC (1986) Intrinsic quasi-linear viscoelastic behavior of the extracellular matrix of cartilage. Trans Orthop Res Soc 11:407

    Google Scholar 

  • Zhu WB, Mow VC, Koob TJ, Eyre DR (1993) Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J Orthop Res 11:771–781

    Article  Google Scholar 

Download references

Acknowledgments

We thank Lukas Moj from the TU Dortmund University, for help with element programming; Thomas S.E. Eriksson from the University of Oxford, for help with ParFEAP; José Raya and Christian Glaser from the NYU Langone Medical Center for use of the diffusion tensor magnetic resonance imaging data; and Magnus B. Lilledahl from the Norwegian University of Science and Technology for generously providing us with the multi-photon microscopy image (Fig. 1, left).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Pierce.

Appendices

Appendix 1

To evaluate integrals over the unit sphere, as shown, e.g., in (8) and (10), we apply the numerical method suggested by Bažant and Oh (1986) using \(m\) distinct direction vectors \(\mathbf{M}^i,\,i=1,2,\ldots , m\). Symmetry of our method allows us to use only half the number of direction vectors, and subsequently double the integration weights \(q^i\). With this approach we numerically estimate integrals as

$$\begin{aligned} \begin{aligned} \int _{\Omega } A(\mathbf{M})\mathrm{d}{\Omega }&= \int _{\theta = 0}^{2 \pi } \int _{\phi = 0}^{\pi } A(\theta , \phi ) \sin \theta \, \mathrm{d}\phi \mathrm{d}\theta \\&\approx 4\pi \sum _{i=1}^m A(\mathbf{M}^i) 2 q^i, \end{aligned} \end{aligned}$$
(19)

where \(A\) is a function taking tensor arguments. A table of the direction vectors and associated integration weights can be found in Table 1 of Bažant and Oh (1986).

Appendix 2

To obtain solutions of nonlinear problems in computational finite (visco)elasticity via incremental solution techniques of Newton’s type, we solve a series of linearized problems and thus require the linearized constitutive equations. Specifically, we require elasticity tensors for both the isotropic matrix and fiber network contributions to the solid extra stress, as well as the derivative of the filtration velocity \(n^\mathrm{F}\,\mathbf{{w}_{\mathrm{FS}}}\) with respect to both the deformation gradient \(\mathbf {F}_{\mathrm{S}}\) and the material gradient of the interstitial fluid pressure \({\mathrm{grad}}\,{p}\). We write the filtration velocity in the current configuration as (16) and (17) [cf. Pierce et al. (2013a, b)]. In the reference configuration, we write the filtration velocity \(n^\mathrm{F}\,\mathbf{{w}_{\mathrm{FS}}}_{0}\) as

$$\begin{aligned} \begin{aligned} n^\mathrm{F}\,\mathbf{{w}_{\mathrm{FS}}}_{0}&= ~{k_\mathrm{0S}}\,\left( \frac{n^\mathrm{F}}{\mathrm{1} - {n^\mathrm{S}_\mathrm{0S}}}\right) ^m\,\\&\times {\mathbf{H}}_{0} \left( -J_\mathrm{S}\,{\mathrm{grad}}\,{p} + J_\mathrm{S}\,{\rho ^{\mathrm{FR}}}\,\mathbf{F}^\mathrm{T}_\mathrm{S}\,{\mathbf{b}}\right) , \end{aligned} \end{aligned}$$
(20)

with,

$$\begin{aligned} {\mathbf{H}}_{0} = \frac{1}{4\pi } \int _{\Omega } \frac{\rho (\mathbf{M})}{I_{4}(\mathbf{M})} \mathbf{M}\otimes \mathbf{M}\,\mathrm{d}\Omega . \end{aligned}$$
(21)

We write the derivative of the filtration velocity in the reference configuration with respect to the deformation gradient of the solid, i.e., \(\partial (n^\mathrm{F}\,\mathbf{{w}_{\mathrm{FS}}}_{0})/\partial \mathbf {F}_{\mathrm{S}}\), as

$$\begin{aligned}&\partial \left( n^\mathrm{F}\,\mathbf{{w}_{\mathrm{FS}}}_{0}\right) /\partial \mathbf{{F}_{\mathrm{S}}} = \partial /\partial \mathbf{{F}_{\mathrm{S}}} \Bigg [{k_\mathrm{0S}}\,\left( \frac{n^\mathrm{F}}{\mathrm{1} - {n^\mathrm{S}_\mathrm{0S}}}\right) ^m\,\nonumber \\&\quad {\mathbf{H}}_{0} \left( -J_\mathrm{S}{\mathrm{grad}}\,{p} + J_\mathrm{S}{\rho ^{\mathrm{FR}}}\mathbf{F}^\mathrm{T}_\mathrm{S}\,{\mathbf{b}}\right) \Bigg ] \nonumber \\&\quad = \displaystyle {k_\mathrm{0S}}\,\left( \frac{n^\mathrm{F}}{\mathrm{1} - {n^\mathrm{S}_\mathrm{0S}}}\right) ^m\, \Bigg [- \frac{\partial {\mathbf{H}}_{0}}{\partial \mathbf{{F}_{\mathrm{S}}}} J_\mathrm{S}{\mathrm{grad}}\,{p}\nonumber \\&\quad - {\mathbf{H}}_{0} \otimes \frac{\partial J_\mathrm{S}}{\partial \mathbf{{F}_{\mathrm{S}}}}{\mathrm{grad}}\,{p} + {\rho ^{\mathrm{FR}}}\,\frac{\partial {\mathbf{H}}_{0}}{\partial \mathbf{{F}_{\mathrm{S}}}} J_\mathrm{S}\mathbf{F}^\mathrm{T}_\mathrm{S}\,{\mathbf{b}} \nonumber \\&\quad + {\rho ^{\mathrm{FR}}}\,{\mathbf{H}}_{0} \frac{\partial J_\mathrm{S}}{\partial \mathbf{{F}_{\mathrm{S}}}} \otimes \mathbf{F}^\mathrm{T}_\mathrm{S}\,{\mathbf{b}} + {\rho ^{\mathrm{FR}}}\,{\mathbf{H}}_{0} J_\mathrm{S} \frac{\partial \mathbf{F}^\mathrm{T}_\mathrm{S}}{\partial \mathbf{{F}_{\mathrm{S}}}}\,{\mathbf{b}} \Bigg ], \end{aligned}$$
(22)

with,

$$\begin{aligned} \displaystyle \partial {\mathbf{H}}_{0} / \partial \mathbf{{F}_{\mathrm{S}}}= & {} \displaystyle \partial / \partial \mathbf{{F}_{\mathrm{S}}} \left[ \frac{1}{4\pi } \int _{\Omega } \frac{\rho (\mathbf{M})}{I_{4}(\mathbf{M})} \mathbf{M}\otimes \mathbf{M}\,\mathrm{d}{\Omega } \right] \nonumber \\= & {} \displaystyle \frac{1}{4\pi } \int _{\Omega } \rho (\mathbf{M})\frac{\partial I_{4}(\mathbf{M})^{-1}}{\partial \mathbf{{F}_{\mathrm{S}}}} \otimes \mathbf{M}\otimes \mathbf{M}\,\mathrm{d}{\Omega }, \end{aligned}$$
(23)

and

$$\begin{aligned} \displaystyle \partial I_{4}(\mathbf{M})^{-1}/ \partial \mathbf{{F}_{\mathrm{S}}}= & {} \displaystyle \frac{\partial I_{4}(\mathbf{M})^{-1}}{\partial I_{4}(\mathbf{M})} \frac{\partial I_{4}(\mathbf{M})}{\partial \mathbf{C}_\mathrm{S}} : \frac{\partial \mathbf{C}_\mathrm{S}}{\partial \mathbf{{F}_{\mathrm{S}}}} \nonumber \\= & {} - \displaystyle I_{4}(\mathbf{M})^{-2} \mathbf{M}\otimes \mathbf{M}\ : \left( \frac{\partial \mathbf{F}^\mathrm{T}_\mathrm{S}}{\partial \mathbf{{F}_{\mathrm{S}}}} \mathbf{{F}_{\mathrm{S}}}\right. \nonumber \\&\left. + \mathbf{F}^\mathrm{T}_\mathrm{S} \frac{\partial \mathbf{{F}_{\mathrm{S}}}}{\partial \mathbf{{F}_{\mathrm{S}}}} \right) . \end{aligned}$$
(24)

In index notation, we write the results from (22)\(_2\)–(24)\(_2\) as

$$\begin{aligned}&\displaystyle (\partial (n^\mathrm{F}\,\mathbf{{w}_{\mathrm{FS}}}_{0})/\partial \mathbf{{F}_{\mathrm{S}}})_{{ IJK }} = \displaystyle {k_\mathrm{0S}}\,\left( \frac{n^\mathrm{F}}{\mathrm{1} - {n^\mathrm{S}_\mathrm{0S}}}\right) ^m\, \nonumber \\&\quad \displaystyle \times \Bigg [ - \left( \frac{\partial {\mathbf{H}}_{0}}{\partial \mathbf{{F}_{\mathrm{S}}}}\right) _{ IJKL } J_\mathrm{S} ({\mathrm{grad}}\,{p})_{L} \nonumber \\&\quad \displaystyle - ({\mathbf{H}}_{0})_{IJ} \left( \frac{\partial J_\mathrm{S}}{\partial \mathbf{{F}_{\mathrm{S}}}} \right) _{ KL } ({\mathrm{grad}}\,{p})_{L} \nonumber \\&\quad \displaystyle + {\rho ^{\mathrm{FR}}}\, \left( \frac{\partial {\mathbf{H}}_{0}}{\partial \mathbf{{F}_{\mathrm{S}}}}\right) _{ IJKM } J_\mathrm{S} (\mathbf{F}^\mathrm{T}_\mathrm{S})_{ ML } \,({\mathbf{b}})_{L} \nonumber \\&\quad \displaystyle + {\rho ^{\mathrm{FR}}}\,({\mathbf{H}}_{0})_{ IM } \left( \frac{\partial J_\mathrm{S}}{\partial \mathbf{{F}_{\mathrm{S}}}}\right) _{ MJ } (\mathbf{F}^\mathrm{T}_\mathrm{S})_{KL}\,({\mathbf{b}})_{L} \nonumber \\&\quad \displaystyle + {\rho ^{\mathrm{FR}}}\,({\mathbf{H}}_{0})_{ IM } J_\mathrm{S} \left( \frac{\partial \mathbf{F}^\mathrm{T}_\mathrm{S}}{\partial \mathbf{{F}_{\mathrm{S}}}}\right) _{ MJKL }\,({\mathbf{b}})_{L} \Bigg ], \end{aligned}$$
(25)

where \((\partial \mathbf{F}^\mathrm{T}_\mathrm{S}/ \partial \mathbf{{F}_{\mathrm{S}}})_{ IJKL } = \delta _{ JK }\delta _{ IL }\), with \(\delta _{ IJ } = \mathbf{e}_{I}\cdot \mathbf{e}_{J}\) the Kronecker delta, and with

$$\begin{aligned}&\displaystyle (\partial {\mathbf{H}}_{0} / \partial \mathbf{{F}_{\mathrm{S}}})_{ IJKL } \nonumber \\&\quad =\displaystyle \frac{1}{4\pi } \int _{\Omega } \rho (\mathbf{M}) \displaystyle \left( \frac{\partial I_{4}(\mathbf{M})^{-1}}{\partial \mathbf{{F}_{\mathrm{S}}}} \right) _{IJ} \left( \mathbf{M}\otimes \mathbf{M}\right) _{ KL }\,\mathrm{d}{\Omega }, \end{aligned}$$
(26)

and

$$\begin{aligned} \begin{aligned}&\displaystyle \left( \partial I_{4}(\mathbf{M})^{-1}/ \partial \mathbf{{F}_{\mathrm{S}}}\right) _{ IJ } \\&\quad = - \displaystyle I_{4}(\mathbf{M})^{-2} (\mathbf{M}\otimes \mathbf{M})_{ KL } \left[ \delta _{KJ}(\mathbf{{F}_{\mathrm{S}}})_{ IL } + (\mathbf{{F}_{\mathrm{S}}})_{ IK }\delta _{ LJ } \right] . \end{aligned} \end{aligned}$$
(27)

To continue, we write the derivative of the filtration velocity in the reference configuration with respect to the material gradient of the interstitial fluid pressure, i.e., \(\partial (n^\mathrm{F}\,\mathbf{{w}_{\mathrm{FS}}}_{0})/\partial {\mathrm{grad}}\,{p}\), as

$$\begin{aligned}&\partial \left( n^\mathrm{F}\,\mathbf{{w}_{\mathrm{FS}}}_{0}\right) \Big /\partial {\mathrm{grad}}\,{p}\nonumber \\&\quad = - {k_\mathrm{0S}}\,\left( \frac{n^\mathrm{F}}{\mathrm{1} - {n^\mathrm{S}_\mathrm{0S}}}\right) ^m\,{\mathbf{H}}_{0} J_\mathrm{S}\,\frac{\partial {\mathrm{grad}}\,{p}}{\partial {\mathrm{grad}}\,{p}}. \end{aligned}$$
(28)

In index notation, we write (28) as

$$\begin{aligned}&\left( \partial \left( n^\mathrm{F}\,\mathbf{{w}_{\mathrm{FS}}}_{0}\right) /\partial {\mathrm{grad}}\,{p}\right) _{IJ}\nonumber \\&\quad = - {k_\mathrm{0S}}\,\left( \frac{n^\mathrm{F}}{\mathrm{1} - {n^\mathrm{S}_\mathrm{0S}}}\right) ^m\,J_\mathrm{S}\,({\mathbf{H}}_{0})_{ IK } \delta _{ KJ }. \end{aligned}$$
(29)

Appendix 3

In a ‘classic’ DT-MRI experiment, the tensor data is reconstructed from six or more diffusion-weighted images under the modeling assumption of a single Gaussian diffusion compartment per voxel (Tuch 2004). In Cartesian coordinates the anisotropic Gaussian probability distribution function (PDF) for a single voxel can be stated according to (1), where therein \(({\varvec{\xi }}) = \left( x, y, z\right) ^{\mathrm{T}}\) denotes the relative displacement of water molecules. Since we are only interested in the orientation density function (ODF) we drop the diffusion time by setting \(\delta = 0.5\,\mathrm{s}\) and, without loss of generality, drop the \(b\)-value by setting \(b = 1.0\,\mathrm{s/mm^2}\), yielding the familiar form of the multivariate normal distribution (with zero mean)

$$\begin{aligned} P({\varvec{\xi }}) = (2\pi )^{-3/2} \left| \mathbf{D}\right| ^{-1/2} \exp \left\{ - \tfrac{1}{2} {\varvec{\xi }}^\mathrm{T} \mathbf{D}^{-1} {\varvec{\xi }} \right\} . \end{aligned}$$
(30)

Due to the simple analytic form of the diffusion probability density, a closed form ODF can be computed. We first convert (30) to spherical coordinates

$$\begin{aligned} x = r \cos \theta \sin \phi , \quad y = r \sin \theta \sin \phi , \quad z = r \cos \phi , \end{aligned}$$
(31)

with \(r \in [0, \infty ),\,\theta \in [0, 2\pi )\), and \(\phi \in [0, \pi ]\). Next, we marginalize out the radius \(r\), account for the factor of \(4\pi \) in (8) and the required ODF results as

$$\begin{aligned} \begin{aligned} \rho (\mathbf{M},\mathbf{D}) =&~ \displaystyle \left( \tfrac{2}{\pi }\right) ^{1/2} \left| \mathbf{D}\right| ^{-1/2} \\&\times \int _0^\infty \! \exp \left\{ - \tfrac{1}{2} r^2 \mathbf{M}^\mathrm{T} \mathbf{D}^{-1} \mathbf{M} \right\} r^2 \sin \theta \, \mathrm{d}r, \end{aligned} \end{aligned}$$
(32)

which gives (18). Note that the Jacobian determinant \(r^2 \sin \theta \) is introduced by the change from Cartesian to spherical coordinates to account for the fact that the surface element on the sphere is not uniform across the entire domain. Assuming the symmetric, positive-definite diffusion tensor is given as

$$\begin{aligned} \left( \mathbf {D}\right) = \left( \begin{array}{ccc} D_{xx} &{}\quad D_{xy} &{}\quad D_{xz} \\ D_{xy} &{}\quad D_{yy} &{}\quad D_{yz} \\ D_{xz} &{}\quad D_{yz} &{}\quad D_{zz} \\ \end{array} \right) , \end{aligned}$$
(33)

the ODF can be written as

$$\begin{aligned} \rho (\mathbf{M},\mathbf{D})= & {} \sin \theta \Big / \bigg \{ \bigg (-\left( D_{xz}^2 D_{yy}\right) + 2 D_{xy} D_{xz} D_{yz} \\&- D_{xx} D_{yz}^2 - D_{xy}^2 D_{zz} + D_{xx} D_{yy} D_{zz}\bigg )^{1/2} \\&\bigg (\Big (\left( D_{xy}^2 - D_{xx} D_{yy}\right) \cos ^2\phi \\&+\left( D_{yz}^2 - D_{yy} D_{zz}\right) \cos ^2\theta \sin ^2\phi \\&- D_{xy} D_{xz} \sin 2\phi \sin \theta + D_{xx} D_{yz} \sin 2\phi \sin \theta \\&+ D_{xz}^2 \sin ^2\phi \sin ^2\theta - D_{xx} D_{zz} \sin ^2\phi \sin ^2\theta \\&+ \cos \theta \left[ \left( D_{xz} D_{yy} - D_{xy} D_{yz}\right) \sin 2\phi \right. \\&\left. - 2 D_{xz} D_{yz} \sin ^2\phi \sin \theta \right. ]\\&+ D_{xy} D_{zz} \sin ^2\phi \sin 2\theta \Big )\\&\Big / \left[ D_{xz}^2 D_{yy} - 2 D_{xy} D_{xz} D_{yz} + D_{xy}^2 D_{zz}\right. \\&\left. + D_{xx} (D_{yz}^2 - D_{yy} D_{zz})\right. ]\bigg )^{2/3} \bigg \}. \end{aligned}$$

Note that most trigonometric functions and several sub-expressions could be pre-computed within a FE implementation, in particular when a numerical integration scheme is used and only certain directions are evaluated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierce, D.M., Unterberger, M.J., Trobin, W. et al. A microstructurally based continuum model of cartilage viscoelasticity and permeability incorporating measured statistical fiber orientations. Biomech Model Mechanobiol 15, 229–244 (2016). https://doi.org/10.1007/s10237-015-0685-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0685-x

Keywords

Navigation