Skip to main content
Log in

Computational Model of Interstitial Transport in the Spinal Cord using Diffusion Tensor Imaging

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Local drug delivery methods, including convection-enhanced delivery (CED), are being used to increase distribution in selected regions of nervous tissue. There is a need for 3D models that predict spatial drug distribution within these tissues. A methodology was developed to process magnetic resonance microscopy (MRM) and diffusion tensor imaging (DTI) scans, segment gray and white matter regions, assign tissue transport properties, and model the interstitial transport of macromolecules. Fiber tract orientation was derived from DTI data and used to assign directional dependence of hydraulic conductivity, K, and tracer diffusivity, D t , transport tensors. Porous media solutions for interstitial fluid pressure, velocity, and albumin distribution were solved using a finite volume method. To test this DTI-based methodology, a rat spinal cord transport model was developed to simulate CED into the dorsal white matter column. Predicted distribution results correspond well with small volume (∼1 μl) trends found experimentally, although albumin loss was greater at larger infusion volumes (>2 μl). Simulations were similar to those using fixed transport properties due to the bulk alignment of white matter fibers along the cord axis. These findings help to validate the DTI-based methodology which can be applied to modeling regions where fiber tract organization is more complex, e.g., the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.
FIGURE 11.
FIGURE 12.
FIGURE 13.

Similar content being viewed by others

Abbreviations

CED:

convection-enhanced delivery

MRM:

magnetic resonance microscopy

DTI:

diffusion tensor imaging

FEM:

finite element method

PBS:

phosphate buffered saline

DWI:

diffusion-weighted imaging

NURBS:

non-uniform rational B-spline surfaces

CSF:

cerebrospinal fluid

REFERENCES

  1. Abbott, N. J. Evidence for bulk flow of brain interstitial fluid: Significance for physiology and pathology. Neurochem. Int. 45:545–552, 2004.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, D. A., J. C. Tannehill, and R. H. Pletcher. Computational fluid mechanics and heat transfer. New York: Hemisphere Publishing Corp., 1984.

    Google Scholar 

  3. Barry, S. I., and G. K. Aldis. Flow-induced deformation from pressurized cavities in absorbing porous tissues. Bull. Math. Biol. 54:977–998, 1992.

    Article  PubMed  CAS  Google Scholar 

  4. Basser, P. J. Interstitial pressure, volume, and flow during infusion into brain tissue. Microvasc. Res. 44:, 1992.

  5. Basser, P. J., J. Mattiello, and D. Lebihan. Estimation of the effective self-diffusion tensor from the NMR spin-echo. J. Magn. Reson. Ser. B 103:247–254, 1994.

    Article  CAS  Google Scholar 

  6. Basser, P. J., J. Mattiello, and D. Lebihan. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66:259–267, 1994.

    PubMed  CAS  Google Scholar 

  7. Basser, P. J., and D. K. Jones. Diffusion-tensor MRI: Theory, experimental design and data analysis—a technical review. NMR in Biomedicine 15:456–467, 2002.

    Article  PubMed  Google Scholar 

  8. Basser, P. J., S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi. In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44:625–632, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Baxter, L. T., and R. K. Jain. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res. 37:77–104, 1989.

    Article  PubMed  CAS  Google Scholar 

  10. Bear, J. Dynamics of fluids in porous media. New York: Dover, 1972.

    Google Scholar 

  11. Bernards, C. M., and H. F. Hill. Morphine and alfentanil permeability through the spinal dura, arachnoid, and pia mater of dogs and monkeys. Anesthesiology 73:1214–1219, 1990.

    PubMed  CAS  Google Scholar 

  12. Bobo, R. H., D. W. Laske, A. Akbasak, P. F. Morrison, R. L. Dedrick, and E. H. Oldfield Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. 91:2076–2080, 1994.

    Article  PubMed  CAS  Google Scholar 

  13. Bradbury, M. The concept of a blood-brain barrier. New York: Wiley, 1979.

    Google Scholar 

  14. Chen, M. Y., R. R. Lonser, P. F. Morrison, L. S. Governale, and E. H. Oldfield. Variables affecting convection-enhanced delivery to the striatum: A systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J. Neurosurg. 90:315–320, 1999.

    Article  PubMed  CAS  Google Scholar 

  15. Conturo, T. E., N. F. Lori, T. S. Cull, E. Akbudak, A. Z. Snyder, J. S. Shimony, R. C. Mckinstry, H. Burton, and M. E. Raichle. Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. 96:10422–10427, 1999.

    Article  PubMed  CAS  Google Scholar 

  16. Curry, F. E. Mechanics and thermodynamics of transcapillary exchange. In: Handbook of physiology. Section 2: The cardiovascular system, Vol. IV, edited by E. M. Renkin and C. C. Michel. Am. Physiological Soc., Bethesda, 1984, pp. 309–374.

    Google Scholar 

  17. Frank, L. R. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 47:1083–1099, 2002.

    Article  PubMed  Google Scholar 

  18. Garcia, A. M., N. Szasz, S. B. Trippel, T. I. Morales, A. J. Grodzinsky, and E. H. Frank. Transport and binding of insulin-like growth factor i through articular cartilage. Arch. Biochem. Biophys. 415:69–79, 2003.

    Article  PubMed  CAS  Google Scholar 

  19. Inglis, B. A., L. Yang, E. D. Iii Wirth, D. Plant, and T. H. Mareci. Diffusion anisotropy in excised normal rat spinal cord measured by NMR microscopy. Mag. Res. Imag. 15:441–450, 1997.

    Article  CAS  Google Scholar 

  20. Jain, R. K.. Barriers to drug-delivery in solid tumors. Sci. Am. 271:58–65, 1994.

    Article  PubMed  CAS  Google Scholar 

  21. Jones, D. K., M. A. Horsfield, and A. Simmons. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med.:515–525, 1999.

  22. Jones, D. K., S. C. R. Williams, D. Gasston, M. A. Horsfield, A. Simmons, and R. Howard. Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time. Hum. Brain Mapp. 15:216–230, 2002.

    Article  PubMed  Google Scholar 

  23. Kaczmarek, M., R. P. Subramaniam, and S. R. Neff. The hydromechanics of hydrocephalus: Steady-state solutions for cylindrical geometry. Bull. Math. Biol. 59(2):295–323, 1997.

    Article  PubMed  CAS  Google Scholar 

  24. Kalyanasundaram, V., V. D. Calhoun, and K. W. Leong. A finite element model for predicting the distribution of drugs delivered intracranially to the brain. Am. J. Physiol. 273:R1810–R1821, 1997.

    PubMed  CAS  Google Scholar 

  25. Kessler, J. A., J. D. Fenstermacher, and E. S. Owens. Spinal subarachnoid perfusion of rhesus monkeys. Am. J. Physiol. 230:614–618, 1976.

    PubMed  CAS  Google Scholar 

  26. Kessler, J. A., C. S. Patlak, and J. D. Fenstermacher. Transport of 5-hydroxy-3-indoleacetic acid by spinal cord during subarachnoid perfusion. Brain Res. 116:471–483, 1976.

    Article  PubMed  CAS  Google Scholar 

  27. Kim, W. S., and J. M. Tarbell. Macromolecular transport through the deformable porous-media of an artery wall. J. Biomech. Eng. 116:156–163, 1994.

    PubMed  CAS  Google Scholar 

  28. Langer, R. New methods of drug delivery. Science 249:1527–1533, 1990.

    PubMed  CAS  Google Scholar 

  29. Laske, D. W., P. F. Morrison, D. M. Lieberman, M. E. Corthesy, J. C. Reynolds, P. A. Stewarthenney, S. S. Koong, A. Cummins, C. H. Paik, and E. H. Oldfield. Chronic interstital infusion of protein to primate brain: Determination of drug distribution and clearance with single-photon emission computerized tomography imaging. J. Neurosurg. 87:586–594, 1997.

    PubMed  CAS  Google Scholar 

  30. Lieberman, D. M., D. W. Laske, P. F. Morrison, K. S. Bankiewicz, and E. D. Oldfield. Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J. Neurosurg. 82:1021–1029, 1995.

    PubMed  CAS  Google Scholar 

  31. Lonser, R. R., N. Gogate, P. F. Morrison, J. D. Wood, E. H. Oldfield. Direct convective delivery of macromolecules to the spinal cord. J. Neurosurg. 89:610–615, 1998.

    PubMed  CAS  Google Scholar 

  32. Lonser, R. R., S. Walbridge, J. A. Butman, H. A. Walters, K. Garmestani, A. O. Vortmeyer, M. W. Brechbiel, and E. H. Oldfield. Successful safe perfusion of the primate brainstem with a macromolecule: In vivo magnetic resonance imaging of macromolecular distribution during infusion. Neurosurg. 51:551–551, 2002.

    Google Scholar 

  33. Mamot, C., J. B. Nguyen, M. Pourdehnad, P. Hadaczek, R. Saito, J. R. Bringas, D. C. Drummond, K. L. Hong, D. B. Kirpotin, T. Mcknight, M. S. Berger, J. W. Park, and K. S. Bankiewicz. Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J. Neurooncol. 68:1–9, 2004.

    Article  PubMed  Google Scholar 

  34. Mardor, Y., Y. Roth, Z. Lidar, T. Jonas, R. Pfeffer, S. E. Maier, M. Faibel, D. Nass, M. Hadani, A. Orenstein, J. S. Cohen, and Z. Ram. Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res. 61:4971–4973, 2001.

    PubMed  CAS  Google Scholar 

  35. Mardor, Y., O. Rahav, Z. Lidar, A. Ocherashvilli, D. Daniels, Y. Roth, S. Maier, J. Zauberman, and Z. Ram. Enhanced efficacy and MR imaging of convection-enhanced drug delivery. Neuro-Oncology 7:378–379, 2005.

    Google Scholar 

  36. Mcqueen, P. G., A. J. Jin, C. Pierpaoli, and P. J. Basser. A finite element model of molecular diffusion in brain incorporating in vivo diffusion tensor MRI data. Proc. of the Int. Soc. for Mag. Res. in Med. 4th Sci. Mtg. and Exhibit. (New York, NY) 1:193, 1996.

    Google Scholar 

  37. Miranda, P. C., M. Hallett, and P. J. Basser. The electric field induced in the brain by magnetic stimulation: A 3-d finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Trans. Biomed. Engrg. 50:1074–1085, 2003.

    Article  Google Scholar 

  38. Mori, S., W. E. Kaufmann, G. D. Pearlson, B. J. Crain, B. Stieltjes, M. Solaiyappan, and P. C. M. Van Zijl. In vivo visualization of human neural pathways by magnetic resonance imaging. Annals Neurol. 47:412–414, 2000.

    Article  CAS  Google Scholar 

  39. Morrison, P. F., M. Y. Chen, R. S. Chadwick, R. R. Lonser, and E. H. Oldfield. Focal delivery during direct infusion to brain: Role of flow rate, catheter diameter, and tissue mechanics. Am. J. Physiol. 277:R1218–R1229, 1999.

    Google Scholar 

  40. Morrison, P. F., D. W. Laske, H. Bobo, E. H. Oldfield, and R. L. Dedrick. High-flow microinfusion: Tissue penetration and pharmacodynamics. Am. J. Physiol. 266:R292–R305, 1994.

    PubMed  CAS  Google Scholar 

  41. Nield, D. A., and A. Bejan. Convection in porous media. New York: Springer, 1998.

    Google Scholar 

  42. Ozarslan, E., B. C. Vemuri, and T. H. Mareci. Generalized scalar measures for diffusion MRI using trace, variance and entropy. Magn. Reson. Med.:866–876, 2005.

  43. Ozarslan, E., T. M. Shepard, B. C. Vemuri, S. J. Blackband, and T. H. Mareci. Resolution of complex tissue microarchitecture using diffusion orientation transform (DOT). NeuroImagein press, 2006.

  44. Ozarslan, E., and T. H. Mareci. Generalized diffusion tensor imaging and analytical relationships between diffusion tensor iimaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50:955–965, 2003.

    Article  PubMed  Google Scholar 

  45. Poupon, C., J. F. Mangin, C. A. Clark, V. Frouin, J. Regis, D. Le Bihan, and I. Bloch. Towards inference of human brain connectivity from MR diffusion tensor data. Med. Image Anal. 5:1–15, 2001.

    Article  PubMed  CAS  Google Scholar 

  46. Prabhu, S. S., W. C. Broaddus, G. T. Gillies, W. G. Loudon, Z. Chen, and B. Smith. Distribution of macromolecular dyes in brain using positive pressure infusion: A model for direct controlled delivery of therapeutic agents. Surg. Neurol. 50:367–375, 1998.

    Article  PubMed  CAS  Google Scholar 

  47. Prokopova, S., L. Vargova, and E. Sykova. Heterogeneous and anisotropic diffusion in the developing rat spinal cord. Neuro. Rep. 8:3527–3532, 1997.

    CAS  Google Scholar 

  48. Reulen, H. J., R. Graham, M. Spatz, and I. Klatzo. Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J. Neurosurg. 46:24–35, 1977.

    Article  PubMed  CAS  Google Scholar 

  49. Saltzman, W. M., and M. L. Radomsky. Drugs released from polymers: Diffusion and elimination in brain tissue. Chem. Eng. Sci. 46:2429–2444, 1991.

    Article  CAS  Google Scholar 

  50. Sarntinoranont, M., F. Rooney, and M. Ferrari. Interstitial stress and fluid pressure within a growing tumor. Ann. Biomed. Eng. 31:327–335, 2003.

    Article  PubMed  Google Scholar 

  51. Sarntinoranont, M., R. Banerjee, R. R. Lonser, and P. F. Morrison. A computational model of direct interstitial infusion of macromolecules into the spinal cord. Ann. Biomed. Eng. 31: 2003.

  52. Sarntinoranont, M., M. J. Iadarola, R. R. Lonser, and P. F. Morrison. Direct interstitial infusion of nk1-targeted neurotoxin into the spinal cord: A computational model. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:R243–R254, 2003.

    PubMed  CAS  Google Scholar 

  53. Stroh, M., W. R. Zipfel, R. M. Williams, W. W. Webb, and W. M. Saltzman. Diffusion of nerve growth factor in rat striatum as determined by multiphoton microscopy. Biophys. J. 85:581–588, 2003.

    Article  PubMed  CAS  Google Scholar 

  54. Sykova, E., J. Svoboda, J. Polak, and A. Chvatal. Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal-cord of the rat. J. Cereb. Blood. Flow Metab. 14:301–311, 1994.

    PubMed  CAS  Google Scholar 

  55. Tao, L., and C. Nicholson. Diffusion of albumins in rat cortical slices and relevance to volume transmission. Neurosci. 75:839–847, 1996.

    Article  CAS  Google Scholar 

  56. Tenti, G., J. M. Drake, and S. Sivaloganathan. Brain biomechanics: Mathematical modeling of hydrocephalus. Neurolog. Res. 22:19–24, 2000.

    CAS  Google Scholar 

  57. Tuch, D. S., R. M. Weisskoff, J. W. Belliveau, and V. J. Wedeen. High angular resolution diffusion imaging of the human brain. In: Proceedings of the 7th Annual Meeting of ISMRM, Philadelphia, 321, 1999.

  58. Tuch, D. S., V. J. Wedeen, A. M. Dale, J. S. George, and J. W. Belliveau. Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc. Nat. Acad. Sci. 98:11697–11701, 2001.

    Article  PubMed  CAS  Google Scholar 

  59. Wood, J. D., R. R. Lonser, N. Gogate, P. F. Morrison, and E. H. Oldfield. Convective delivery of macromolecules into the naive and traumatized spinal cords of rats. J. Neurosurg. 90(Spine 1):115–120, 1999.

    PubMed  CAS  Google Scholar 

  60. Yuan, F., S. Chien, and S. Weinbaum. A new view of convective-diffusive transport processes in the arterial intima. J. Biomech. Eng. 113:314–329, 1991.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Sara Berens for assistance with MRI data collection and Dr. Robert Yezierski for providing the fixed, excised rat spinal cord sample. The authors would also like to thank Dr. Peter Basser for helpful discussions on incorporating DTI into predictive models, and Dr. Russell Lonser for consultation on the CED technique. The MRI data was obtained at the Advanced Magnetic Resonance Imaging and Spectroscopy Facility in the McKnight Brain Institute and National High Magnetic Field Laboratory of the University of Florida. The work was supported in part by the National Institutes of Health through grant P41 RR16105 (THM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malisa Sarntinoranont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarntinoranont, M., Chen, X., Zhao, J. et al. Computational Model of Interstitial Transport in the Spinal Cord using Diffusion Tensor Imaging. Ann Biomed Eng 34, 1304–1321 (2006). https://doi.org/10.1007/s10439-006-9135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9135-3

Keywords

Navigation