Skip to main content

Modelling of saturated thermo-elastic porous solids with different phase temperatures

  • Chapter
Porous Media

Abstract

Based on the Theory of Porous Media (TPM), a binary model for the description of saturated thermo-elastic porous solids with different phase temperatures will be presented. The constituents solid and fluid can be compressible or incompressible, i. e. the binary model discussed here includes the compressible model, the hybrid models of first and second type and the incompressible model. For the four different binary models the field equations, the constitutive relations and the dissipation mechanism will be developed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beatty, M. F.: Topics in finite elasticity: Hyperelasticty of rubber, elastomers, and biological tissues–with examples. Appl. Mech. Rev. 40 (1987), 1699–1734.

    Article  Google Scholar 

  2. Biot, M. A., Willis, D. G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24 (1957), 594–601.

    MathSciNet  Google Scholar 

  3. Bluhm, J.: A consistent model for saturated and empty porous media. Forschungsberichte aus dem Fachbereich Bauwesen 74, Universität-GH Essen 1997.

    Google Scholar 

  4. de Boer, R.: Theory of porous media - highlights in the historical development and current state. Springer-Verlag, Berlin 2000.

    Google Scholar 

  5. de Boer, R., Bluhm, J.: The influence of compressibility on the stresses of elastic porous solids–semimicroscopic investigations. Int. J. Solids Structures 36 (1999), 4805–4819.

    Article  MATH  Google Scholar 

  6. de Boer, R., Didwania, A. K.: The effect of uplift in liquid-saturated porous solids–Karl von Terzaghi’s contributions and recent findings. Géotechnique 47 (2) (1997), 289–298.

    Article  Google Scholar 

  7. de Boer, R., Ehlers, W.: Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme, Teil I. Forschungsberichte aus dem Fachbereich Bauwesen 40, Universität-GH Essen 1986.

    Google Scholar 

  8. Bowen, R. M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18 (1980), 1129–1148.

    Article  MATH  Google Scholar 

  9. Bowen, R. M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20 (1982), 697–735.

    Article  MATH  Google Scholar 

  10. Bowen, R. M., Wiese, J. C.: Diffusion in mixtures of elastic materials. Int. J. Eng. Sci. 7 (1969), 689–722.

    Article  MATH  Google Scholar 

  11. Coleman, B. D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13 (1963), 167–178.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ehlers, W.: Poröse Medien - ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Forschungsberichte aus dem Fachbereich Bauwesen 47, Universität-GH Essen 1988.

    Google Scholar 

  13. Ehlers, W.: On the thermodynamics of elasto-plastic porous media. Arch. Mech. 41 (1989), 73–93.

    MathSciNet  MATH  Google Scholar 

  14. Ehlers, W.: Constitutive equations for granular materials in geomechanical contexts. In Hutter, H. (ed.): Continuum mechanics in environmental sciences and geophysics, CISM Courses and Lecture Notes No. 337, Springer-Verlag, Wien 1993, 313–402.

    Google Scholar 

  15. Green, A. E., Naghdi, P. M.: A dynamical theory of interacting continua. Int. J. Engng. Sci. 3 (1965), 231–241.

    Article  MathSciNet  Google Scholar 

  16. Lade, P. V., de Boer, R.: The concept of effective stress for soil, concrete and rock. Géotechnique 47 (1) (1997), 61–78.

    Article  Google Scholar 

  17. Miehe, C.: Zur numerischen Behandlung thermomechanischer Prozesse. Forschungs-und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, Bericht-Nr. F88/6, Universität Hannover 1988.

    Google Scholar 

  18. Müller, I.: A thermodynamic theory of mixtures of fluids. Arch. Rational Mech. Anal. 28 (1968), 1–39.

    Article  MathSciNet  MATH  Google Scholar 

  19. Nur, A., Byerlee, J. D.: An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. 76 (1971), 6414–6419.

    Article  Google Scholar 

  20. Simo, J. C., Pister, K. S.: Remarks on rate constitutive equations for finite deformation problems: Computational implications. Comput. Meth. Appl. Mech. Eng. 46 (1984), 201–215.

    Article  MATH  Google Scholar 

  21. Suklje, L.: Rheological aspects of soil mechanics. Wiley Interscience, New York 1969.

    Google Scholar 

  22. von Terzaghi, K.: The shearing resistance of saturated soils and the angle between the planes of shear. In Casagrande, A. et al. (eds.): Proceedings of the Internationale Conference on Soil Mechanics and Foundation Engineering, Vol. I, Harvard University 1936, pp. 54–56.

    Google Scholar 

  23. Truesdell, C.: Rational thermodynamics. 2nd. ed., Springer-Verlag, New York 1984.

    Google Scholar 

  24. Truesdell, C., Toupin, R. A.: The classical field theories. In Flügge, S. (ed.): Handbuch der Physik, Band III/1, Springer-Verlag, Berlin 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bluhm, J. (2002). Modelling of saturated thermo-elastic porous solids with different phase temperatures. In: Ehlers, W., Bluhm, J. (eds) Porous Media. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04999-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04999-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07843-9

  • Online ISBN: 978-3-662-04999-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics