Skip to main content

Foundations of multiphasic and porous materials

  • Chapter
Porous Media

Abstract

Miscible multiphasic materials like classical mixtures as well as immiscible materials like saturated and partially saturated porous media can be successfully described on the common basis of the well-founded Theory of Mixtures (TM) or the Theory of Porous Media (TPM). In particular, both the TM and the TPM provide an excellent frame for a macroscopic description of a broad variety of engineering applications and further problems in applied natural sciences. The present article portrays both the standard and the micropolar approaches to multiphasic materials reflecting their mechanical and their thermodynamical frameworks. Including some constitutive models and various illustrative numerical examples, the article can be understood as a reference paper to all the following articles of this volume on theoretical, experimental and numerical investigations in the Theory of Porous Media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biot, M. A.: Le problème de la consolidation de matières argileuses sous une charge. Ann. Soc. Sci. Bruxelles B 55 (1935), 110–113.

    Google Scholar 

  2. Biot, M. A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941), 155–164.

    Article  MATH  Google Scholar 

  3. Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range. J. Acoust. Soc. Am. 28 (1956), 168–178.

    Article  MathSciNet  Google Scholar 

  4. Bishop, A. W.: The effective stress principle. Teknisk Ukeblad 39 (1959), 859863.

    Google Scholar 

  5. Bluhm, J.: A consistent model for saturated and empty porous media. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 74, Universität-GHEssen 1997.

    Google Scholar 

  6. de Boer, R.: Vektor-und Tensorrechnung für Ingenieure. Springer-Verlag, Berlin 1982.

    Book  MATH  Google Scholar 

  7. de Boer, R.: Highlights in the historical development of porous media theory: toward a consistent macroscopic theory. Applied Mechanics Review 49 (1996), 201–262.

    Article  Google Scholar 

  8. de Boer, R.: Theory of Porous Media. Springer-Verlag, Berlin 2000.

    Book  MATH  Google Scholar 

  9. de Boer, R., Ehlers, W.: Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 40, Universität-GH-Essen 1986.

    Google Scholar 

  10. de Boer, R., Ehlers, W.: The development of the concept of effective stresses. Acta Mech. 83 (1990), 77–92.

    Article  MathSciNet  MATH  Google Scholar 

  11. de Boer, R., Ehlers, W.: Uplift, friction and capillarity - three fundamental effects for liquid-saturated porous media. Int. J. Solids Structures 26 (1990), 43–57.

    Article  Google Scholar 

  12. de Boer, R., Ehlers, W., Kowalski, S., Plischka, J.: Porous media - a survey of different approaches. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 54, Universität-GH-Essen 1991.

    Google Scholar 

  13. de Borst, R.: Simulation of strain localization: A reappraisal of the Cosserat continuum. Engineering Computations 8 (1991), 317–332.

    Article  Google Scholar 

  14. Bowen, R. M.: Theory of mixtures. In Eringen, A. C. (ed.): Continuum Physics, Vol. III, Academic Press, New York 1976, pp. 1–127.

    Google Scholar 

  15. Bowen, R. M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Engng. Sci. 18 (1980), 1129–1148.

    Article  MATH  Google Scholar 

  16. Bowen, R. M.: Compressible porous media models by use of the theory of mixtures. Int. J. Engng. Sci. 20 (1982), 697–735.

    Article  MATH  Google Scholar 

  17. Coleman, B. D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13 (1963), 167–178.

    Article  MathSciNet  MATH  Google Scholar 

  18. Cosserat, E., Cosserat, F.: Théorie des corps déformables. A. Hermann et fils, Paris 1909. (Theory of Deformable Bodies, NASA TT F-11 561, 1968 ).

    Google Scholar 

  19. Coussy, O.: Mechanics of Porous Continua. Wiley, Chichester 1995.

    MATH  Google Scholar 

  20. Crawford, R. H., Anderson, D. C., Waggenspack, W. N.: Mesh rezoning of 2d isoparametric elements by inversion. International Journal for Numerical Methods in Engineering 28 (1989), 523–531.

    Article  MathSciNet  MATH  Google Scholar 

  21. Cross, J. J.: Mixtures of fluids and isotropic solids. Arch. Mech. 25 (1973), 1025–1039.

    MathSciNet  MATH  Google Scholar 

  22. Delesse, M.: Pour déterminer la composition des roches. Annales des mines, 4. séries 13 (1848), 379–388.

    Google Scholar 

  23. Diebels, S.: Mikropolare Zweiphasenmodelle: Formulierung auf der Basis der Theorie Poröser Medien. Habilitation, Bericht Nr. II-4 aus dem Institut für Mechanik ( Bauwesen ), Universität Stuttgart 2000.

    Google Scholar 

  24. Diebels, S., Ehlers, W.: Dynamic analysis of a fully saturated porous medium accounting for geometrical and material non-linearities. Int. J. Numer. Methods Engng. 39 (1996), 81–97.

    Article  MATH  Google Scholar 

  25. Diebels, S., Ehlers, W.: On fundamental concepts of multiphase micropolar materials. Technische Mechanik, 16: 77–88 (1996).

    Google Scholar 

  26. Diebels, S., Ellsiepen, P., Ehlers, W.: Error-controlled Runge-Kutta time integration of a viscoplastic hybrid two-phase model. Technische Mechanik 19 (1999), 19–27.

    Google Scholar 

  27. Ehlers, W.: On thermodynamics of elasto-plastic porous media. Arch. Mech. 41 (1989), 73–93.

    MathSciNet  MATH  Google Scholar 

  28. Ehlers, W.: Poröse Medien - ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 47, Universität-GH-Essen 1989.

    Google Scholar 

  29. Ehlers, W.: Toward finite theories of liquid-saturated elasto-plastic porous media. Int. J. Plasticity 7 (1991), 443–475.

    Article  Google Scholar 

  30. Ehlers, W.: Compressible, incompressible and hybrid two-phase models in porous media theories. In Angel, Y. C. (ed.): Anisotropy and Inhomogeneity in Elasticity and Plasticity, AMD-Vol. 158. The American Society of Mechanical Engineers, New York 1993, pp. 25–38.

    Google Scholar 

  31. Ehlers, W.: Constitutive equations for granular materials in geomechanical context. In Hutter, K. (ed.): Continuum Mechanics in Environmental Sciences and Geophysics, CISM Courses and Lectures No. 337. Springer-Verlag, Wien 1993, pp. 313–402.

    Google Scholar 

  32. Ehlers, W.: Grundlegende Konzepte in der Theorie Poröser Medien. Technische Mechanik 16 (1996), 63–76.

    Google Scholar 

  33. Ehlers, W.: Continuum and numerical simulation of porous materials in science and technology. In Capriz, G., Ghionna, V. N., Giovine, G. (eds.): Modelling and Mechanics of Granular and Porous Materials, Modelling and Simulation in Science, Engineering and Technology Series, Birkhäuser Verlag, Basel 2002, pp. 243–289.

    Google Scholar 

  34. Ehlers, W., Ammann, M., Diebels, S.: h-Adaptive FE methods applied to single-and multiphase problems. International Journal for Numerical Methods in Engineering 54 (2002), 219–239.

    Article  MATH  Google Scholar 

  35. Ehlers, W., Blome, P.: A triphasic model for unsaturated soils based on the theory of porous media. Mathematical and Computer Modelling,submitted.

    Google Scholar 

  36. Ehlers, W., Droste, A.: A continuum model for highly porous aluminium foam. Technische Mechanik 19 (1999), 341–350.

    Google Scholar 

  37. Ehlers, W., Droste, A.: FE simulations of metal foams based on the macroscopic approach of the Theory of Porous Media. In Banhart, J., Ashby, M., Fleck, N. (eds.): Proceedings of the International Conference of Metal Foams and Porous Metal Structures. Verlag MIT, Bremen 1999, pp. 299–302.

    Google Scholar 

  38. Ehlers, W., Ellsiepen, P.: Adaptive Zeitintegrations-Verfahren für ein elastisch-viskoplastisches Zweiphasenmodell. ZAMM 78 (1998), S361–S362.

    MATH  Google Scholar 

  39. Ehlers, W., Ellsiepen, P.: PANDAS: Ein FE-System zur Simulation von Sonderproblemen der Bodenmechanik. In Wriggers, P., Meißner, U., Stein, E., Wunderlich, W. (eds.): Finite Elemente in der Baupraxis: Modellierung, Berechnung und Konstruktion. Ernst & Sohn, Berlin 1998, pp. 391–400. Beiträge zur Tagung FEM ‘88 an der TU Darmstadt am 5. und 6. März 1998.

    Google Scholar 

  40. Ehlers, W., Ellsiepen, P.: Zeit-und ortsadaptive Verfahren zur Berechnung von Scherbändern in porösen Materialien. In Mahnken, R. (ed.): Theoretische und Numerische Methoden in der Angewandten Mechanik mit Praxisbeispielen. Forschungs-und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, Bericht-Nr. F98/4, 1998, pp. 99–106. Festschrift anläßlich der Emeritierung von Herrn Prof. Dr.-Ing. Dr.-Ing. E. h. E. Stein.

    Google Scholar 

  41. Ehlers, W., Ellsiepen, P.: Theoretical and numerical methods in environmental continuum mechanics based on the theory of porous media. In Schrefler, B. A. (ed.): Environmental Geomechanics, CISM Courses and Lectures No. 417. Springer-Verlag, Wien 2001, pp. 1–81.

    Google Scholar 

  42. Ehlers, W., Ellsiepen, P., Ammann, M.: Time-and space-adaptive methods applied to localization phenomena in empty and saturated micropolar and standard porous materials. International Journal for Numerical Methods in Engineering 52 (2001), 503–526.

    Article  MATH  Google Scholar 

  43. Ehlers, W., Ellsiepen, P., Blome, P., Mahnkopf, D., Markert, B.: Theoretische und numerische Studien zur Lösung von Rand-und Anfangswertproblemen in der Theorie Poröser Medien, Abschlußbericht zum DFG-Forschungsvorhaben Eh 107/6–2. Bericht aus dem Institut für Mechanik (Bauwesen), Nr. 99–II-1, Universität Stuttgart 1999.

    Google Scholar 

  44. Ehlers, W., Markert, B.: On the viscoelastic behaviour of fluid-saturated materials. Granular Matter 2 (2000), 153–161.

    Article  Google Scholar 

  45. Ehlers, W., Markert, B.: A linear viscoelastic biphasic model for soft tissues based on the theory of porous media. ASME Journal of Biomechanical Engineering 123 (2001), 418–424.

    Article  Google Scholar 

  46. Ehlers, W., Markert, B.: A visco-elastic two-phase model for articular cartilage tissues. In Ehlers, W. (ed.): IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials. Kluwer, Dordrecht 2001, pp. 87–92.

    Google Scholar 

  47. Ehlers, W., Markert, B.: A macroscopic finite strain model for cellular polymers. International Journal of Plasticity,in press.

    Google Scholar 

  48. Ehlers, W., Markert, B., Klar, O.: Biphasic description of viscoelastic foams by use of an extended Ogden-type formulation. In Ehlers, W., Bluhm, J. (eds.): Porous Media: Theory, Experiments and Numerical Applications. Springer-Verlag, Berlin 2002, pp. 275–294.

    Google Scholar 

  49. Ehlers, W., Müllerschön, H.: Stress-strain behaviour of cohesionless soils: Experiments, theory and numerical computations. In Cividini, A. (ed.): Application of Numerical Methods to Geotechnical Problems, CISM Courses and Lectures No. 397. Springer-Verlag, Wien 1998, pp. 675–684.

    Google Scholar 

  50. Ehlers, W., Volk, W.: On shear band localization phenomena induced by elasto-plastic consolidation of fluid-saturated soils. In Owen, D. R. J., Oíiate, E., Hinton, E. (eds.): Computational Plasticity - Fundamentals and Applications. CIMNE, Barcelona 1997, pp. 1657–1664.

    Google Scholar 

  51. Ehlers, W., Volk, W.: On shear band localization phenomena of liquid-saturated granular elasto-plastic porous solid materials accounting for fluid viscosity and micropolar solid rotations. Mech. Cohes.-Frict. Mater. 2 (1997), 301–320.

    Article  Google Scholar 

  52. Ehlers, W., Volk, W.: On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic solid materials. Int. J. Solids Structures 35 (1998), 4597–4617.

    Article  MATH  Google Scholar 

  53. Ehlers, W., Volk, W.: Localization phenomena in liquid-saturated and empty porous solids. Transport in Porous Media 34 (1999), 159–177.

    Article  MathSciNet  Google Scholar 

  54. Eipper, G.: Theorie und Numerik finiter elastischer Deformationen in fluidgesättigten porösen Medien. Dissertation, Bericht Nr. II-1 aus dem Institut für Mechanik ( Bauwesen ), Universität Stuttgart 1998.

    Google Scholar 

  55. Ellsiepen, P.: Zeit-und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien. Dissertation, Bericht Nr. II-3 aus dem Institut für Mechanik ( Bauwesen ), Universität Stuttgart 1999.

    Google Scholar 

  56. Eringen, A. C., Kafadar, C. B.: Polar field theories. In Eringen, A. C. (ed.): Continuum Physics, Vol. VI. Academic Press, New York 1976, pp. 1–73.

    Google Scholar 

  57. Gallimard, L., Ladevéze, P., Pelle, J. P.: Error estimation and adaptivity in elastoplasticity. Int. J. Numer. Methods Engng. 39 (1996), 129–217.

    Article  Google Scholar 

  58. Günther, W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh. Braunschweig. Wiss. Ges. 10 (1958), 195–213.

    MATH  Google Scholar 

  59. Hairer, E., Lubich, C., Roche, M.: The Numerical Solution of Differential-Algebraic Equations by Runge-Kutta Methods. Springer-Verlag, Berlin 1989.

    Google Scholar 

  60. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations, Vol. 2: Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin 1991.

    Google Scholar 

  61. Hassanizadeh, S. M., Gray, W. G.: General conservation equations for multiphase systems: 1. Averaging procedure. Adv. Water Resources 2 (1979), 131144.

    Google Scholar 

  62. Hassanizadeh, S. M., Gray, W. G.: General conservation equations for multiphase systems: 2. Mass, momentum, energy and entropy equations. Adv. Water Resources 2 (1979), 191–203.

    Google Scholar 

  63. Haupt, P.: Foundation of continuum mechanics. In Hutter, K. (ed.): Continuum Mechanics in Environmental Sciences and Geophysics, CISM Courses and Lectures No. 337. Springer-Verlag, Wien 1993, pp. 1–77.

    Google Scholar 

  64. Haupt, P.: Continuum Mechanics and Theory of Materials. Springer-Verlag, Berlin 2000.

    MATH  Google Scholar 

  65. Heinrich, G., Desoyer, K.: Hydromechanische Grundlagen für die Behandlung von stationären und instationären Grundwasserströmungen. Ing.-Archiv 23 (1955), 182–185.

    Article  MathSciNet  Google Scholar 

  66. Heinrich, G., Desoyer, K.: Hydromechanische Grundlagen für die Behandlung von stationären und instationären Grundwasserströmungen, II. Mitteilung. Ing.-Archiv 24 (1956), 81–84.

    Article  MathSciNet  MATH  Google Scholar 

  67. Heinrich, G., Desoyer, K.: Theorie dreidimensionaler Setzungsvorgänge in Tonschichten. Ing.-Archiv 30 (1961), 225–253.

    Article  MathSciNet  MATH  Google Scholar 

  68. Huyghe, J. M., Jansson, C. F., Lanier, Y., von Donkelaar, C. C., Maroudas, A., van Campen, D. H.: Experimental measurement of electrical conductivity and electro-osmotic permeability of ionised porous media. In Ehlers, W., Bluhm, J. (eds.): Porous Media: Theory, Experiments and Numerical Applications. Springer-Verlag, Berlin 2002, pp. 295–313.

    Google Scholar 

  69. Kafadar, C. B., Eringen, A. C.: Micropolar media - I: the classical theory. Int. J. Engng. Sci. 9 (1971), 271–305.

    Article  MATH  Google Scholar 

  70. Kossaczkÿ, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comp. Appl. Math. 55 (1994), 275–288.

    Article  MATH  Google Scholar 

  71. Krause, R., Rank, E.: A fast algorithm for point-location in a finite element mesh. Computing 57 (1996), 49–62.

    Article  MathSciNet  MATH  Google Scholar 

  72. Lade, P., de Boer, R.: The concept of effective stress for soil, concrete and rock. Géotechnique 47 (1997), 61–78.

    Article  Google Scholar 

  73. Ladevèse, P., Pelle, J. P., Rougeot, P.: Error estimation and mesh optimization for classic finite elements. Eng. Comp. 8 (1991), 69–80.

    Google Scholar 

  74. Lewis, R. W., Schrefler, B. A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd Edition. Wiley, Chichester 1998.

    MATH  Google Scholar 

  75. Liu, I-S.: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Rational Mech. Anal. 46 (1972), 131–148.

    MATH  Google Scholar 

  76. Liu, I-S., Müller, I.: Thermodynamics of mixtures of fluids. In Truesdell, C. (ed.): Rational Thermodynamics, 2nd Edition. Springer-Verlag, New York 1984, pp. 264–285.

    Chapter  Google Scholar 

  77. Mahnkopf, D.: Lokalisierung fluidgesättigter poröser Festkörper bei finiten elastoplastischen Deformationen. Dissertation, Bericht Nr. II-5 aus dem Institut für Mechanik ( Bauwesen ), Universität Stuttgart 2000.

    Google Scholar 

  78. Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171 (1999), 387–418.

    Article  MathSciNet  MATH  Google Scholar 

  79. Mitchell, W. F.: Adaptive refinement for arbitrary finite-element spaces with hierarchical bases. J. Comp. Appl. Math. 36 (1991), 65–78.

    Article  MATH  Google Scholar 

  80. Mow, V. C., Ateshian, G. A., Lai, W. M., Gu, W. Y.: Effects on fixed charges on the stress-relaxation behavior of hydrated soft tissues in a confined compression problem. Int. J. Solids Structures 35 (1998), 4945–4962.

    Article  MATH  Google Scholar 

  81. Mow, V. C., Gibbs, M. C., Lai, W. M., Zhu, W. B., Athanasiou, K. A.: Biphasic indentation of articular cartilage - II. J. Biomechanics 22 (1989), 853–861.

    Article  Google Scholar 

  82. Mow, V. C., Sun, D. D., Guo, X. E., Likhitpanichkul, M., Lai, W. M.: Fixed negative charges modulate mechanical behaviours and electrical signals in articular cartilage under confined compression. In Ehlers, W., Bluhm, J. (eds.): Porous Media: Theory, Experiments and Numerical Applications. Springer-Verlag, Berlin 2002, pp. 227–247.

    Google Scholar 

  83. Müllerschön, H.: Spannungs-Verzerrungsverhalten granularer Materialien am Beispiel von Berliner Sand. Dissertation, Bericht Nr. II-6 aus dem Institut für Mechanik ( Bauwesen ), Universität Stuttgart 2000.

    Google Scholar 

  84. Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon Press, Oxford 1986.

    MATH  Google Scholar 

  85. Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. Eng. 9 (1966), 243–377.

    Article  Google Scholar 

  86. Plischka, J.: Die Bedeutung der Durchschnittsbildungstheorie für die Theorie poröser Medien. Dissertation, Fachbereich Bauwesen, Universität-GH-Essen 1992.

    Google Scholar 

  87. Schrefler, B. A.: Modelling of subsidence due to water or hydrocarbon withdraw from the subsoil. In Schrefler, B. A. (ed.): Environmental Geomechanics,CISM Courses and Lectures No. 417. Springer-Verlag, Wien 2001, pp. 235301.

    Google Scholar 

  88. Schrefler, B. A., Scotta, R.: A fully coupled model for two-pase flow in de-formable porous media. Comp. Methods Appl. Mech. Engrg. 190 (2001), 32233246.

    Google Scholar 

  89. Schrefler, B. A., Simoni, L., Xikui, L., Zienkiewicz, O. C.: Mechanics of partially saturated porous media. In Desai, C. S., Gioda, G. (eds.): Numerical Methods and Constitutive Modelling in Geomechanics, CISM Courses and Lectures No. 311. Springer-Verlag, Wien 1990, pp. 169–209.

    Google Scholar 

  90. Schrefler, B. A., Zhan, X.: A fully coupled model for water flow and air flow in deformable porous media. Water Res. Research 29 (1993), 155–167.

    Article  Google Scholar 

  91. Schröder, J.: Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Stabilitätsproblemen. Habilitation, Bericht Nr. 1–7 aus dem Institut für Mechanik ( Bauwesen ), Universität Stuttgart 2000.

    Google Scholar 

  92. Shewchuk, J. R.: Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator School of Computer Science, Carnegie Mellon University, Pittsburgh, Pensilvania 1996. http://vim.cs.cmu.edu/“quake/triangel.html.

    Google Scholar 

  93. Skempton, A. W.: Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In Bjerrum, L., Casagrande, A., Peck, R. B., Skempton, A. W. (eds.): From Theory to Practice in Soil Mechanics. Wiley, New York 1960, pp. 42–53.

    Google Scholar 

  94. Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elasto-plasticity. Int. J. Solids Structures 31 (1994), 1063–1084.

    Article  MathSciNet  MATH  Google Scholar 

  95. Suquet, P. M.: Elements of homogenization for inelastic solid mechanics. In Sanches-Palencia, E., Zaoui, A. (eds.): Homogenization techniques for composite media Lecture Notes in Physics, Springer-Verlag, Berlin 1987, pp. 193277.

    Google Scholar 

  96. Svendsen, B., Hutter, K.: On the thermodynamics of a mixture of isotropic materials with constraints. Int. J. Engng Sci. 33 (1995), 2021–2054.

    Article  MathSciNet  MATH  Google Scholar 

  97. Terzaghi, K.: Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. IIa 132 (1923), 125–138.

    Google Scholar 

  98. Terzaghi, K.: Erdbaumechanik auf bodenphysikalischer Grundlage. Franz Deuticke, Leipzig 1925.

    MATH  Google Scholar 

  99. Terzaghi, K., Jelinek, R.: Theoretische Bodenmechanik. Springer-Verlag, Berlin 1954.

    Book  Google Scholar 

  100. Truesdell, C.: Sulle basi delle termomeccanica. Rend. Lincei 22 (1957), 158166.

    Google Scholar 

  101. Truesdell, C.: Rational Thermodynamics, 2nd Edition. Springer-Verlag, New York 1984.

    Book  MATH  Google Scholar 

  102. Truesdell, C.: Thermodynamics of diffusion. In Truesdell, C. (ed.): Rational Thermodynamics. 2nd Edition, Springer-Verlag, New York 1984, pp. 219–236.

    Chapter  Google Scholar 

  103. Truesdell, C., Toupin, R. A.: The classical field theories. In Flügge, S. (ed.): Handbuch der Physik, Vol. III/1, Springer-Verlag, Berlin 1960, pp. 226–902.

    Google Scholar 

  104. Ulm, F.-J., Coussy, O.: Environmental chemomechanics of concrete. In Schrefler, B. A. (ed.): Environmental Geomechanics, CISM Courses and Lectures No. 417. Springer-Verlag, Wien 2001, pp. 301–350.

    Google Scholar 

  105. van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44 (1980), 892–898.

    Article  Google Scholar 

  106. Volk, W.: Untersuchung des Lokalisierungsverhaltens mikropolarer poröser Medien mit Hilfe der Cosserat-Theorie. Dissertation, Bericht Nr. II-2 aus dem Institut für Mechanik ( Bauwesen ), Universität Stuttgart 1999.

    Google Scholar 

  107. Woltman, R.: Beyträge zur Hydraulischen Architektur. Dritter Band, Johann Christian Dietrich, Göttingen 1794.

    Google Scholar 

  108. Zienkiewicz, O. C., Zhu, J. Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Engng. 24 (1987), 337–357.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehlers, W. (2002). Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds) Porous Media. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04999-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04999-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07843-9

  • Online ISBN: 978-3-662-04999-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics