Skip to main content
Log in

Fabrication of the pyrolyzing carbon-supported cobalt–dicyandiamide electrocatalysts and study on the active sites and mechanism for oxygen reduction in alkaline electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, carbon-supported cobalt–dicyandiamide (Co–DCD) was synthesized by a simple chemical method followed heat-treated at 600,700, 800, 900, and 1000 °C to acquire electrocatalysts with excellent activity for the oxygen reduction reaction (ORR). The resulting catalysts Co–N/C–T pyrolyzed at 600–1000 °C all showed substantial activities to ORR, and the catalyst heat-treated at 800 °C exhibited the best ORR activity. The catalytic performance of Co y –N x /C 0.25T catalysts synthesized with different amounts of DCD as nitrogen source and Co(OAc)2⋅4H2O as metal precursor were measured by cyclic voltammetry in alkaline electrolyte. The onset potential for oxygen reduction on the optimum catalyst was approximately 0.938 V (vs. RHE) in 0.1 M NaOH solution, higher by 83 mV than that on the commercial catalyst of 20 % JM Pt/C. Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to characterize the catalyst in terms of the structure and composition in order to sketch the contours of the catalytic active sites of the catalysts. The characterization studies indicate that pyridinic N–C was the most important of the catalytic active sites and responsible for the ORR catalytic activity of Co–N/C–T in alkaline electrolyte. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) was also used to obtain the overall ORR electron transfer number and electron transfer coefficiency. The overall electron transfer number for ORR catalyzed by the optimum catalyst Co0.2–N2.35/C0.25–800 was determined to be 3.47 by CV and 3.89–3.96 by LSV,respectively, suggesting that the ORR was a mixture of two- and four-electron transfer pathways, but dominated by a four-electron transfer process. Based on these measurements and other references, an ORR mechanism was proposed to facilitate further investigation. The results also show that this novel catalyst with ORR excellent activity would have outstanding methanol tolerance and potential application as a kind of nonprecious metal cathodic ORR catalyst for direct methanol fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Nat Chem 1:552–556

    Article  CAS  Google Scholar 

  2. Qiao JL, Xu L, Ding L, Zhang L, Baker R, Dai XF, Zhang JJ (2012) Appl Catal B 125:197–205

    Article  CAS  Google Scholar 

  3. Calle-Vallejo F, Martínez JI, Rossmeisl J (2011) Phys Chem Chem Phys 13:15639–15643

    Article  CAS  Google Scholar 

  4. Chen RR, Li HX, Chu D, Wang GF (2009) J Phys Chem C 113:20689–20697

    Article  CAS  Google Scholar 

  5. Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki J (2008) J Phys Chem C 112:14706–14709

    Article  CAS  Google Scholar 

  6. Lee DH, Lee WJ, Kim SO, Kim YH (2011) Phys Rev Lett 106:175502–175505

    Article  Google Scholar 

  7. Lee KR, Lee KU, Lee JW, Ahn BT, Woo SI (2010) Electrochem Commun 12:1052–1056

    Article  CAS  Google Scholar 

  8. Lefèvre M, Dodelet JP (2003) Electrochim Acta 48:2749–2760

    Article  Google Scholar 

  9. Liu G, Li XG, Ganesan P, Popov BN (2009) Appl Catal B 93:156–165

    Article  CAS  Google Scholar 

  10. Li XG, Liu G, Popov BN (2010) J Power Sources 195:6373–6378

    Article  CAS  Google Scholar 

  11. Li XG, Popov BN, Kawahara T, Yanagi H (2011) J Power Sources 196:1717–1722

    Article  CAS  Google Scholar 

  12. Bezerra CWB, Zhang L, Lee KC, Liu HS, Marques ALB, Marques EP, Wang HJ, Zhang JJ (2008) Electrochim Acta 53:4937–4951

    Article  CAS  Google Scholar 

  13. Shao YY, Sui JH, Yin GP, Gao YZ (2008) Appl Catal B 79:89–99

    Article  CAS  Google Scholar 

  14. Thorum MS, Hankett JM, Gewirth AA (2011) J Phys Chem Lett 2:295–298

    Article  CAS  Google Scholar 

  15. Lefèvre M, Dodelet JP, Bertrand P (2002) J Phys Chem B 106:8705–8713

    Article  Google Scholar 

  16. Bashyam R, Zelenay P (2006) Nature 443:63–66

    Article  CAS  Google Scholar 

  17. Lefèvre M, Proietti E, Jaouen F, Dodelet J-P (2009) Science 324:71–74

    Article  Google Scholar 

  18. Mo ZY, Liao SJ, Zheng YY, Fu ZY (2012) Carbon 50:2620–2627

    Article  CAS  Google Scholar 

  19. Byon HR, Suntivich J, Crumlin EJ, Shao-Horn Y (2011) Phys Chem Chem Phys 13:21437–21445

    Article  CAS  Google Scholar 

  20. Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J, Miyata S (2009) J Power Sources 187:93–97

    Article  CAS  Google Scholar 

  21. Liu G, Li XG, Ganesan P, Popov BN (2010) Electrochim Acta 55:2853–2858

    Article  CAS  Google Scholar 

  22. Li S, Zhang L, Liu HS, Pan M, Zan L, Zhang JJ (2010) Electrochim Acta 55:4403–4411

    Article  CAS  Google Scholar 

  23. Zhang R, Ma JH, Wang WY, Li RF (2010) J Electroanal Chem 643:31–38

    Article  CAS  Google Scholar 

  24. Subramanian NP, Li XG, Nallathambi V, Kumaraguru SP, Colon-Mercado H, Wu G, Lee JW, Popov BN (2009) J Power Sources 188:38–44

    Article  CAS  Google Scholar 

  25. Liu Z, Zhang G, Lu Z, Jin X, Chang Z, Sun X (2013) Nano Res 6:293–301

    Article  CAS  Google Scholar 

  26. Wu G, Nelson M, Ma S, Meng H, Cui G, Shen PK (2011) Carbon 49:3972–3982

    Article  CAS  Google Scholar 

  27. Oda K, Yoshio T (1987) J Mater Sci 22:2729–2733

    Article  CAS  Google Scholar 

  28. Zhang CZ, Hao R, Liao HB, Hou YL (2013) Nano Energy 2:88–97

    Article  CAS  Google Scholar 

  29. Wu P, Qian Y, Du P, Zhang H, Cai C (2012) J Mater Chem 22:6402–6412

    Article  CAS  Google Scholar 

  30. Yan X-H, Xu B-Q (2014) J Mater Chem A 2:8617–8622

    Article  CAS  Google Scholar 

  31. Choi CH, Lee SY, Park SH, Woo SI (2011) Appl Catal B Environ 103:362–368

    Article  CAS  Google Scholar 

  32. Zhang H-J, Li H, Li X, Qiu H, Yuan X, Zhao B, Ma Z-F, Yang J (2014) Int J Hydrog Energy 39:267–276

    Article  CAS  Google Scholar 

  33. Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Carbon 33:1641–1653

    Article  CAS  Google Scholar 

  34. Rao CV, Cabrera CR, Ishikawa Y (2010) J Phys Chem Lett 1:2622–2627

    Article  CAS  Google Scholar 

  35. Morozan A, Jegou P, Jousselme B, Palacin S (2011) Phys Chem Chem Phys 13:21600–21607

    Article  CAS  Google Scholar 

  36. Jiang H, Su Y, Zhu Y, Shen J, Yang X, Feng Q, Li C (2013) J Mater Chem A 1:12074–12081

    Article  CAS  Google Scholar 

  37. Yuasa M, Yamaguchi A, Itsuki H, Tanaka K, Yamamoto M, Oyaizu K (2005) Chem Mater 17:4278–4281

    Article  CAS  Google Scholar 

  38. Kónya Z, Kiss J, Oszkó A, Siska A, Kiricsi I (2001) Phys Chem Chem Phys 3:155–158

    Article  Google Scholar 

  39. Ganesan S, Leonard N, Barton SC (2014) Phys Chem Chem Phys 16:4576–4585

    Article  CAS  Google Scholar 

  40. Nallathambi V, Lee J-W, Kumaraguru SP, Wu G, Popov BN (2008) J Power Sources 183:34–42

    Article  CAS  Google Scholar 

  41. Charreteur F, Jaouen F, Ruggeri S, Dodelet JP (2008) Electrochim Acta 53:2925–2938

    Article  CAS  Google Scholar 

  42. Chen X, Li F, Zhang N, An L, Xia D (2013) Phys Chem Chem Phys 15:19330–19336

    Article  CAS  Google Scholar 

  43. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) ACS Nano 5:4350–4358

    Article  CAS  Google Scholar 

  44. Yang DS, Bhattacharjya D, Song MY, Yu JS (2014) Carbon 67:736–743

    Article  CAS  Google Scholar 

  45. Yang SB, Feng XL, Wang XC, Müllen K (2011) Angew Chem Int Ed 50:5339–5343

    Article  CAS  Google Scholar 

  46. Byon HR, Suntivich J, Shao-Horn Y (2011) Chem Mater 23:3421–3428

    Article  CAS  Google Scholar 

  47. Wen ZH, Wang XC, Mao S, Bo Z, Kim H, Cui SM, Lu GH, Feng XL, Chen JH (2012) Adv Mater 24:5610–5616

    Article  CAS  Google Scholar 

  48. Jiang W-J, Hu J-S, Zhang X, Jiang Y, Yu B-B, Wei Z-D, Wan L-J (2014) J Mater Chem A 2:10154–10160

    Article  CAS  Google Scholar 

  49. Kim D-W, Li OL, Saito N (2014) Phys Chem Chem Phys 16:14905–14911

    Article  CAS  Google Scholar 

  50. Chlistunoff J (2011) J Phys Chem C 115:6496–6507

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Shanxi Provence Natural Science Foundation in China (No. 2013011012-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Liu, L., Zhang, J. et al. Fabrication of the pyrolyzing carbon-supported cobalt–dicyandiamide electrocatalysts and study on the active sites and mechanism for oxygen reduction in alkaline electrolyte. J Solid State Electrochem 19, 1695–1707 (2015). https://doi.org/10.1007/s10008-015-2788-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2788-9

Keywords

Navigation