Skip to main content
Log in

Exploration and isolation of novel thermophiles in frozen enrichment cultures derived from a terrestrial acidic hot spring

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

An isolation strategy, exploring novel microorganisms in frozen enrichment cultures (ENFE), which uses a combination of enrichment culture and 16S rRNA gene clone analysis, was evaluated for isolating uncultured thermophiles from a terrestrial acidic hot spring. The procedure comprised (a) multiple enrichment cultures under various conditions, (b) cryostorage of all enrichments, (c) microbial community analyses of the enrichments using 16S rRNA gene sequences, and (d) purification of microorganisms from enrichments containing previously uncultured microorganisms. The enrichments were performed under a total of 36 conditions, and 16 of these enrichments yielded positive microbial growth with the detection of three previously uncultured archaea. Two of the three previously uncultured archaea, strains HS-1 and HS-3, were successfully isolated. Strain HS-1 and HS-3 represented a novel lineage of the order Sulfolobales and novel species of the genus Sulfolobus, respectively. Although innovative isolation methods play strategic roles in isolating previously uncultured microorganisms, the ENFE strategy showed potential for characterizing and isolating such microorganisms using conventional media and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akanuma S, Nakajima Y, Yokobori S, Kimura M, Nemoto M, Mase T, Miyazono K, Tanokura M, Yamagishi A (2013) Experimental evidence for the thermophilicity of ancestral life. P Natl Acad Sci USA 110:11067–11072

    Article  CAS  Google Scholar 

  • Aoi Y, Kinoshita T, Hata T, Ohta H, Obokata H, Tsuneda S (2009) Hollow-fiber membrane chamber as a device for in situ environmental cultivation. Appl Environ Microbiol 75:3826–3833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bae JW, Rhee SK, Park JR, Kim BC, Park YH (2005) Isolation of uncultivated anaerobic thermophiles from compost by supplementing cell extract of Geobacillus toebii in enrichment culture medium. Extremophiles 9:477–485

    Article  PubMed  Google Scholar 

  • Becerra A, Delaye L, Lazcano A, Orgel LE (2007) Protein disulfide oxidoreductases and the evolution of thermophily: was the last common ancestor a heat-loving microbe? J Mol Evol 65:296–303

    Article  CAS  PubMed  Google Scholar 

  • Ben-Dov E, Kramarsky-Winter E, Kushmaro A (2009) An in situ method for cultivating microorganisms using a double encapsulation technique. FEMS Microbiol Ecol 68:363–371

    Article  CAS  PubMed  Google Scholar 

  • Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68:3978–3987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557

    PubMed Central  CAS  PubMed  Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283:220–221

    Article  CAS  PubMed  Google Scholar 

  • Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrica 40:237–264

    Article  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirayama H, Sunamura M, Takai K, Nonoura T, Noguchi T, Oida T, Furushima Y, Yamamoto H, Oomori T, Horikoshi K (2007) Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Appl Environ Microbiol 73:7642–7656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  PubMed  Google Scholar 

  • Itoh YH, Kurosawa N, Uda I, Sugai A, Tanoue S, Itoh T, Horiuchi T, Itoh T (2001) Metallosphaera sedula TA-2, a calditoglycerocaldarchaeol deletion strain of a thermoacidophilic archaeon. Extremophiles 5:241–245

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Suzuki KI, Nakase T (2002) Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan. Int J Syst Evol Microbiol 52:1097–1104

    CAS  PubMed  Google Scholar 

  • Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851

    Article  CAS  PubMed  Google Scholar 

  • Jung D, Seo E-Y, Epstein SS, Joung Y, Han J, Parfenova VV, Belykh OI, Gladkikh AS, Ahn TS (2014) Application of a new cultivation technology, I-tip, for studying microbial diversity in freshwater sponges of Lake Baikal, Russia. FEMS Microbiol Ecol 90:417–423

    CAS  PubMed  Google Scholar 

  • Kato S, Itoh T, Yamagishi A (2011) Archaeal diversity in a terrestrial acidic spring field revealed by a novel PCR primer targeting archaeal 16S rRNA genes. FEMS Microbiol Lett 319:34–43

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa N (2013) Discovery of thermostable enzymes from hot environmental samples by metagenomic approaches. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic Microbes in Environmental and Industrial Biotechnology. Dordrecht: Springer Science + Business Media, Germany, pp 413–427

  • Kurosawa N, Itoh YH, Iwai T, Sugai A, Uda I, Kimura N, Horiuchi T, Itoh T (1998) Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol 48:451–456

    Article  PubMed  Google Scholar 

  • Kvist T, Ahring BK, Westermann P (2007) Archaeal diversity in Icelandic hot springs. FEMS Microbiol Ecol 59:71–80

    Article  CAS  PubMed  Google Scholar 

  • Mirete S, de Figueras CG, González-Pastor JE (2011) Diversity of Archaea in Icelandic hot springs based on 16S rRNA and chaperonin genes. FEMS Microbiol Ecol 77:165–175

    Article  CAS  PubMed  Google Scholar 

  • Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, Kanigan T, Lewis K, Epsein SS (2010) Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76:2445–2450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishiyama M, Yamamoto S, Kurosawa N (2013) Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches. J Microbiol 51:413–422

    Article  CAS  PubMed  Google Scholar 

  • Perevalova AA, Kolganova TV, Birkeland NK, Schleper C, Bonch-Osmolovskaya EA, Lebedinsky AV (2008) Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland. Appl Environ Microbiol 74:7620–7628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Satoh T, Watanabe K, Yamamoto H, Yamamoto S, Kurosawa N (2013) Archaeal community structures in the solfataric acidic hot springs with different temperatures and elemental compositions. Archaea. doi:10.1155/2013/723871

    PubMed Central  PubMed  Google Scholar 

  • Sharma A, Kawarabayasi Y, Satyanarayana T (2012) Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16:1–19

    Article  CAS  PubMed  Google Scholar 

  • Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slobodkina GB, Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA, Slobodkin AI (2015) Pyrobaculum ferrireducens sp. nov., a hyperthermophilic Fe(III)-, selenate- and arsenate-reducing crenarchaeon isolated from a hot spring. Int J Syst Evol Microbiol 65:851–856

    Article  CAS  PubMed  Google Scholar 

  • Stetter KO (1996) Hyperthermophiles in the history of life. Phil Trans R Soc B 361:1837–1843

    Article  Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka Y, Hanada S, Manome A, Tsuchida T, Kurane R, Nakamura K, Kamagata Y (2004) Catellibacterium nectariphilum gen. nov., sp. nov., which requires a diffusible compound from a strain related to the genus Sphingomonas for vigorous growth. Int J Syst Evol Microbiol 54:955–959

    Article  CAS  PubMed  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact. doi:10.1186/1475-2859-6-9

    PubMed Central  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao W, Zeng X, Xiao X (2014) Thermococcus eurythermalis sp. nov., a conditional piezophilic, hyperthermophilic archaeon with a wide temperature range for growth, isolated from an oil-immersed chimney in the Guaymas Basin. Int J Syst Evol Microbiol 65:30–35

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. Tsujiuchi (President of Hakone Onsen Kyokyu Co. Ltd) and Mr. Katsumata (staff of the same company) for permission of sampling and safety guide for the field work, respectively. We also thank Dr. Dennis W. Grogan for carefully reading our manuscript. This research was financially supported by the Sasakawa Scientific Research Grant (27-436) from The Japan Science Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Kurosawa.

Additional information

Communicated by A. Oren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, H.D., Kurosawa, N. Exploration and isolation of novel thermophiles in frozen enrichment cultures derived from a terrestrial acidic hot spring. Extremophiles 20, 207–214 (2016). https://doi.org/10.1007/s00792-016-0815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0815-0

Keywords

Navigation