Skip to main content
Log in

Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaku, K., Reed, M.H., Yagi, M., Kai, K., and Yasuda, Y. 1991. Chemical and physical processes occurring in the Fushime geothermal system, Kyusyu, Japan. J. Geochem. 25, 315–333.

    Article  CAS  Google Scholar 

  • Albuquerque, L., Santos, J., Travassos, P., Nobre, M.F., Rainey, F.A., Wait, R., Empadinhas, N., Silva, M.T., and Costa, M.S. 2002. Albidovulum inexpectatum gen. nov., sp. nov., a nonphotosynthetic and slightly thermophilic bacterium from a marine hot spring that is very closely related to members of the photosynthetic genus Rhodovulum. Appl. Environ. Microbiol. 68, 4266–4273.

    Article  PubMed  CAS  Google Scholar 

  • Alfredsson, G.A., Kristjansson, J.K., Hjörleifsdottir, S., and Stetter, K.O. 1988. Rhodothermus marinus, gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J. Gen. Microbiol. 134, 299–306.

    CAS  Google Scholar 

  • Altschlul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    Google Scholar 

  • Amann, R.I., Ludwig, W., and Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169.

    PubMed  CAS  Google Scholar 

  • Beman, J.M. and Francis, C.A. 2006. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bhía del tóbari, Mexico. Appl. Environ. Microbiol. 72, 7767–7777.

    Article  PubMed  CAS  Google Scholar 

  • Benlloch, S., Acinas, S.G., Antón, J., López-López, A., Luz, S.P., and RodríguezValera, F. 2001. Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR. Microb. Ecol. 41, 12–19.

    PubMed  CAS  Google Scholar 

  • Bernhard, A.E., Landry, Z.C., Blevins, A., Torre, J.R., Giblin, A.E., and Stahl, D.A. 2010. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl. Environ. Microbiol. 76, 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  • Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P. 2008. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature 6, 245–252.

    CAS  Google Scholar 

  • Brock, T.D. 1978. Thermophilic microorganisms and life at high temperatures, pp. 181–216. Springer-Verlag, Now York, N.Y., USA.

    Book  Google Scholar 

  • Chao, A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791.

    Article  PubMed  CAS  Google Scholar 

  • Chao, A. and Lee, S.M. 1992. Estimating the number of classes via sample coverage. J. Amer. Stat. Assoc. 87, 210–217.

    Article  Google Scholar 

  • Cho, J.C., Vergin, K.L., Morris, R.M., and Giovannoni, S.J. 2004. Lentisphaera araneosa gen. nov., sp. nov., a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ. Microbiol. 6, 611–621.

    Article  PubMed  CAS  Google Scholar 

  • Coenye, T., Vandamme, P., and LiPuma, J.J. 2002. Infection by Ralstonia species in cystic fibrosis patients: identification of R. pickettii and R. mannitolilytica by polymerase chain reaction. Emerg. Infect. Dis. 8, 692–696.

    Article  PubMed  CAS  Google Scholar 

  • Colwell, R.K. 2009. EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2. User’s Guide and application published at: http://purl.oclc.org/estimates.

    Google Scholar 

  • Dang, H., Zhang, X., Sun, J., Li, T., Zhang, Z., and Yang, G. 2008. Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology 154, 2084–2095.

    Article  PubMed  CAS  Google Scholar 

  • Delong, E.F. and Pace, N.R. 2001. Environmental diversity of bacteria and archaea. Syst. Biol. 50, 470–478.

    Article  PubMed  CAS  Google Scholar 

  • Elshahed, M.S., Senko, J.M., Najar, F.Z., Kenton, S.M., Roe, B.A., Dewers, T.A., Spear, J.R., and Krumholz, L.R. 2003. Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl. Environ. Microbiol. 69, 5609–5621.

    Article  PubMed  CAS  Google Scholar 

  • Flockton, H.I. and Cross, T. 1975. Variability in Thermoactinomyces vulgaris. J. Appl. Bacteriol. 38, 309–313.

    Article  Google Scholar 

  • Good, I.L. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40, 237–264.

    Google Scholar 

  • Gosink, J.J., Hervig, R.P., and Staley, J.T. 1997. Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. System. Appl. Microbiol. 20, 356–365.

    Article  Google Scholar 

  • Guffanti, A.A., Blanco, R., Benenson, R.A., and Krulwich, T.A. 1980. Bioenergetic properties of alkaline-tolerant and alkalophilic strains of Bacillus firmus. J. Gen. Microbiol. 119, 79–86.

    CAS  Google Scholar 

  • Hatae, N., Kurokawa, T., Kamada, M., Tsuyuki, T., and Osako, Y. 1965. Hot springs in Kagoshima Prefecture: Part I hot springs in the Ibusuki area. A publication of Kagoshima Prefecture (in Japanese). Kagoshima, Japan.

    Google Scholar 

  • Hausdorf, G., Krüger, K., and Höhne, W.E. 1980. Thermitase, a thermostable serine protease from Thermoactinomyces vulgaris: Classification as a subtilisin-type protease. Int. J. Peptide Protein Res. 15, 420–429.

    Article  CAS  Google Scholar 

  • Hinde, R., Pironet, F., and Borowitzka, M.A. 1994. Isolation of Oscillatoria spongeliae, the filamentous cyanobacterial symbiont of the marine sponge Dysidea herbacea. Marine Biol. 119, 99–104.

    Article  Google Scholar 

  • Hobel, C.F.V., Marteinsson, V.T., Hreggvidsson, G.ó., and Kristjánsson, J.K. 2005. Investigation of the microbial ecology of intertidal hot springs by using diversity analysis of 16S rRNA and chitinase genes. Appl. Environ. Microbiol. 71, 2771–2776.

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz, P., Goevel, B.M., and Pace, N.R. 1998. Impact of culture- independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774.

    PubMed  CAS  Google Scholar 

  • Iizuka, T., Tokura, M., Jojima, Y., Hiraishi, A., Yamanak, S., and Fudou, R. 2006. Enrichment and phylogenetic analysis of moderately thermophilic myxobacteria from hot springs in Japan. Microbes Environ. 21, 189–199.

    Article  Google Scholar 

  • Ikemi, H. and Chiba, H. 1993. Effect of meteoric water-seawater-rock interaction for the chemistry of hydrothermal fluids in the Satsunan area. Abstr. A-26 (in Japanese). Abstr. Lec. Meet. Geotherm. Soc. Jpn.

    Google Scholar 

  • Jing, H., Lacap, D.C., Lau, C.Y., and Pointing, S.B. 2006. Community phylogenetic diversity of cyanobacterial mats associated with geothermal springs along a tropical intertidal gradient. Extremophiles 10, 159–163.

    Article  PubMed  CAS  Google Scholar 

  • Kamke, J., Taylor, M.W., and Schmitt, S. 2010. Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons. ISME J. 4, 498–508.

    Article  PubMed  CAS  Google Scholar 

  • Khan, S.T., Nakagawa, Y., and Harayama, S. 2006. Sediminicola luteus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. Int. J. Syst. Evol. Microbiol. 56, 841–845.

    Article  PubMed  CAS  Google Scholar 

  • Kloos, W.E. and Schleifer, K.H. 1975. Isolation and characterization of Staphylococci from human skin. Int. J. Syst. Evol. Microbiol. 25, 62–79.

    CAS  Google Scholar 

  • Kubo, K., Knittel, K., Amann, R., Fukui, M., and Matsuura, K. 2011. Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan. Syst. Appl. Microbiol. 34, 293–302.

    Article  PubMed  Google Scholar 

  • Kwon, K.K., Woo, J.H., Yang, S.H., Kang, J.H., Kang, S.G., Kim, S.J., Sato, T., and Kato, C. 2007. Altererythrobacter epoxidivorans gen. nov., sp. nov., an eposide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int. J. Syst. Evol. Microbiol. 57, 2207–2211.

    Article  PubMed  CAS  Google Scholar 

  • Lucila, M., Pomar, C.A., and Giuffrè, G. 1996. Pico-, nano- and microplankton communities in hydrothermal marine coastal environments of the Eolian Islands (Panarea and Vulcano) in the Mediterranean Sea. J. Plankton Res. 18, 715–730.

    Article  Google Scholar 

  • Ludwig, W., Strunk, O., Klugbauer, S., Weizenegger, M., Neumaier, J., Bachleitner, M., and Schleifer, K.H. 1998. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568.

    Article  PubMed  CAS  Google Scholar 

  • Magurran, A.E. 2004. Measuring biological diversity, p. 238. Blackwell Publishing, Oxford, UK.

    Google Scholar 

  • Marteinsson, V.T., Birrien, J.L., Raguénès, G., Costa, M.S., and Prieur, D. 1999. Isolation and characterization of Thermus thermophiles Gy1211 from a deep-sea hydrothermal vent. Extremophiles 3, 247–251.

    Article  PubMed  CAS  Google Scholar 

  • Matsubaya, O., Sakai, H., Kusachi, I., and Satake, H. 1973. Hydrogen and oxygen isotopic ratios and major element chemistry of Japanese thermal water systems. J. Geochem. 7, 123–151.

    Article  CAS  Google Scholar 

  • Miller, S.R., Strong, A.L., Jones, K.L., and Ungerer, M.C. 2009. Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in yellowstone national park. Appl. Environ. Micorbiol. 75, 4565–4572.

    Article  CAS  Google Scholar 

  • Moreira, L., Nobre, M.F., Sa-Correia, I., and Da Costa, M.S. 1996. Genomic typing and fatty acid composition of Rhodothermus marinus. Syst. Appl. Microbiol. 19, 83–90.

    Article  CAS  Google Scholar 

  • Na, H., Kim, O.S., Yoon, S.H., Kim, Y., and Chun, J. 2011. Comparative approach to capture bacterial diversity of coastal waters. J. Microbiol. 49, 729–740.

    Article  PubMed  Google Scholar 

  • Nakagawa, S., Nakamura, S., Inagaki, F., Takai, K., Shirai, N., and Sako, Y. 2004. Hydrogenivirga caldilitoris gen. nov., sp. nov., a novel extremely thermophilic, hydrogen- and sulfur-oxidizing bacterium from a coastal hydrothermal field. Int. J. Syst. Evol. Microbiol. 54, 2079–2084.

    Article  PubMed  CAS  Google Scholar 

  • Nedashkovskaya, O.I., Kim, S.B., Lee, K.H., Mikhailov, V.V., and Bae, K.S. 2005. Gillisia mitskevichiae sp. nov., a novel bacterium of the family Flavobacteriaceae, isolated from sea water. Int. J. Syst. Evol. Microbiol. 55, 321–323.

    Article  PubMed  CAS  Google Scholar 

  • Nunes, O.C., Donato, M.M., and Da Costa, M.S. 1992. Isolation and characterization of Rhodothermus marinus. Syst. Appl. Microbiol. 19, 83–90.

    Google Scholar 

  • Ohtaki, A., Mizuno, M., Yoshida, H., Tonozuka, T., Sakano, Y., and Kamitori, S. 2006. Structure of a complex of Thermoactinomyces vulgaris R-47 α-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft. Carbohydrate Res. 341, 1041–1046.

    Article  CAS  Google Scholar 

  • Oi, T., Ikeda, K., Nakano, M., Ossaka, T., and Ossaka, J. 1996. Boron isotope geochemistry of hot spring waters in Ibusuki and adjacent areas, Kagoshima, Japan. J. Geochem. 30, 273–287.

    Article  CAS  Google Scholar 

  • Oshima, T. and Imahori, K. 1974. Description of Thermus thermophiles (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int. J. Syst. Bacteriol. 24, 102–112.

    Article  CAS  Google Scholar 

  • Pace, N.R. 1997. A molecular view of microbial diversity and the biosphere. Science 276, 734–739.

    Article  PubMed  CAS  Google Scholar 

  • Petursdottir, S.K., Bjornsdottir, S.H., Hreggvidsson, G.O., Hjorleifsdottir, S., and Kristjansson, J.K. 2009. Analysis of the unique geothermal microbial ecosystem of the Blue Lagoon. FEMS Microbiol. Ecol. 70, 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Pukall, R., Buntefub, D., Frühling, A., Rohde, M., Kroppenstedt, R.M., Burghardt, J., Lebaron, P., Bernard, L., and Stackebrandt, E. 1999. Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α-Proteobacteria. Int. J. Syst. Evol. Microbiol. 49, 513–519.

    CAS  Google Scholar 

  • Rappe, M.S. and Giovannoni, S.J. 2003. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394.

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach, A.L., Whickham, C.R., and Pace, N.R. 1994. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl. Environ. Microbiol. 60, 2113–2119.

    PubMed  CAS  Google Scholar 

  • Rohwer, F., Seguritan, V., Azam, F., and Knowlton, N. 2002. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10.

    Article  Google Scholar 

  • Sakamoto, H., Matsumoto, A., Tomiyasu, T., and Yonehara, N. 1993. Chemical compositions of hot springs in Ibusuki city and its ambient area. Abstr. p. 260 (in Japanese). Abstr. Lec. Meet. Geotherm. Soc. Jpn.

    Google Scholar 

  • Sako, Y., Takai, K., Ishida, Y., Uchida, A., and Katayama, Y. 1996. Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int. J. Syst. Bacteriol. 46, 1099–1104.

    Article  PubMed  CAS  Google Scholar 

  • Schleper, C., Jurgens, G., and Jonuscheit, M. 2005. Genomic studies of uncultivated archaea. Nature 3, 479–488.

    CAS  Google Scholar 

  • Sekiguchi, Y., Yamada, T., Hanada, S., Ohashi, A., Harada, H., and Kamagata, Y. 2001. Anaerolinea thermophila gen. nov., sp. nov. and filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphlum level. Int. J. Syst. Evol. Microbiol. 53, 1843–1851.

    Article  Google Scholar 

  • Shaw, A.K., Halpern, A.L., Beeson, K., Tran, B., Venter, J.C., and Martiny, J.B.H. 2008. It’s all relative: ranking the diversity of aquatic bacterial communities. Environ. Microbiol. 10, 2200–2210.

    Article  PubMed  Google Scholar 

  • Shoreit, A.A.M. 1992. Isolation, identification and germination of spores of Thermoactinomyces from Qatari soils (Arabian Gulf). J. Basic Microbiol. 32, 113–118.

    Article  Google Scholar 

  • Singleton, D.R., Furlong, M.A., Rathbun, S.L., and Whitman, W.B. 2001. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl. Envion. Microbiol. 67, 4374–4376.

    Article  CAS  Google Scholar 

  • Stackebrandt, E. and Ebers, J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 33, 152–155.

    Google Scholar 

  • Stevens, H., Stübner, M., Simon, M., and Brinkhoff, T. 2005. Phylogeny of Proteobacteria and Bacteroidetes from oxic habitats of a tidal flat ecosystem. FEMS Microbiol. Ecol. 54, 351–365.

    Article  PubMed  CAS  Google Scholar 

  • Strous, M., Fuerst, J.A., Kramer, E.H.M., Logemann, S., Muyzer, G., Pas-Schoonen, K.T., Webb, R., Kuenen, J.G., and Jetten, M.S.M. 1999. Missing lithotroph identified as new planctomycete. Nature 400, 446–449.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Tobler, D.J. and Benning, L.G. 2011. Bacterial diversity in five Icelandic geothermal waters: temperature and sinter growth rate effects. Extremophiles 15, 473–485.

    Article  PubMed  Google Scholar 

  • Torre, J.R., Walker, C.B., Ingalls, A.E., Könneke, M., and Stahl, D.A. 2008. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ. Microbiol. 10, 810–818.

    Article  PubMed  Google Scholar 

  • Tsuyuki, T. 1976. Trutium content of the thermal-waters of Hitoyoshi, Kirishima and Ibusuki hot springs, south Kyusyu, Japan. Kagoshima University Repository. 9, 75–86 (in Japanese).

    CAS  Google Scholar 

  • Vandecandelaere, I., Nercessian, O., Segaert, E., Achouak, W., Mollica, A., Faimali, M., and Vandamme, P. 2009a. Nautella italica gen. nov., sp. nov., isolated from a marine electroactive biofilm. Int. J. Syst. Evol. Microbiol. 59, 811–817.

    Article  PubMed  CAS  Google Scholar 

  • Vandecandelaere, I., Segaert, E., Mollica, A., Faimali, M., and Vandamme, P. 2009b. Phaeobacter caeruleus sp. nov., a blue-coloured, colony-forming bacterium isolated from a marine electroactive biofilm. Int. J. Syst. Evol. Microbiol. 59, 1209–1214.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, M. and Horn, M. 2006. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotech. 17, 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Xiao, X., Jiang, L., Peng, X., Zhou, H., Meng, J., and Wang, F. 2009. Diversity and abundance of ammonia-oxidizing archaea in hydrothermal vent chimneys of the Juan de Fuca Ridge. Appl. Envion. Microbiol. 75, 4216–4220.

    Article  CAS  Google Scholar 

  • Ward, D.M., Ferris, M.J., Nold, S.C., and Bateson, M.M. 1998. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol. Mol. Biol. Rev. 62, 1353–1370.

    PubMed  CAS  Google Scholar 

  • Ward, D.M., Tayne, T.A., Anderson, K.L., and Bateson, M.M. 1987. Community structure and interactions among community members in hot spring cyanobacterial mats. Symp. Soc. Gen. Microbiol. 41, 179–210.

    CAS  Google Scholar 

  • Yang, C.H., Huang, Y.C., and Chen, C.Y. 2009. Degradation of rutin by Thermoactinomyces vulgaris and other thermophilic compost isolates. J. Agric. Food Chem. 57, 5095–5099.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J.H., Kang, S.J., Lee, S.Y., Oh, K.H., and Oh, T.K. 2009. Seohaeicola saemankumensis gen. nov., sp. nov., isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 59, 2675–2679.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J.H. and Oh, T.K. 2005. Sphingopyxis flavimaris sp. nov., isolated from sea water of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 55, 369–373.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C.L., Ye, Q., Huang, Z., Li, W.J., Chen, J., Song, Z., Zhao, W., Bagwell, C., Inskeep, W.P., Ross, C., and et al. 2008. Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl. Envion. Microbiol. 74, 6417–6426.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Kurosawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishiyama, M., Yamamoto, S. & Kurosawa, N. Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches. J Microbiol. 51, 413–422 (2013). https://doi.org/10.1007/s12275-013-2419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2419-z

Keywords

Navigation