Skip to main content
Log in

Protein Disulfide Oxidoreductases and the Evolution of Thermophily: Was the Last Common Ancestor a Heat-Loving Microbe?

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Protein disulfide oxidoreductases (PDOs) are redox enzymes that catalyze dithiol–disulfide exchange reactions. Their sequences and structure reveal the presence of two thioredoxin fold units, each of which is endowed with a catalytic site CXXC motif. PDOs are the outcome of an ancient gene duplication event. They have been described in a number of thermophilic and hyperthermophilic species, where they play a critical role in the structural stabilization of intracellular proteins. PDOs are homologous to both the N-terminal domain of the bacterial alkyl hydroperoxide reductase (AhpF) and to the eukaryotic protein disulfide isomerase (PDI). Phylogenetic analysis of PDOs suggests that they first evolved in the crenarchaeota, spreading from them into the Bacteria via the euryarchaeota. These results imply that the last common ancestor (LCA) of all extant living beings lacked a PDO and argue, albeit weakly, against a thermophilic LCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PDOs:

protein disulfide oxidoreductases

AhpF:

alkyl hydroperoxide reductase

PDI:

eukaryotic protein disulfide isomerase

LCA:

last common ancestor

References

  • Achenbach-Richter L, Gupta R, Stetter KO, Woese CR (1987) Were the original Eubacteria thermophiles? Syst Appl Microbiol 9:34–39

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Barion S, Franchi M, Gallori E, Di Giulio M (2007) First lines of divergence in the Bacteria domain were the hyperthermophilic organisms, the Thermotogales and the Aquificales, and not the mesophilic Planctomycetales. BioSystems 87:13–19

    Article  PubMed  CAS  Google Scholar 

  • Beeby M, O’Connor BD, Ryttersgaard C, Boutz DR, Perry LJ, Yeates TO (2005) The genomics of disulfide bonding and protein stabilization in thermophiles. PLoS Biol 3:1549–1558

    Article  CAS  Google Scholar 

  • Brochier C, Philippe H (2002) A non-hyperthermophilic ancestor for Bacteria. Nature 417:244

    Article  PubMed  CAS  Google Scholar 

  • Brochier C, Gribaldo S, Zivanovic Y, Confalonieri F, Forterre P (2005) Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? (2005) Genome Biol 6:R42

    Article  PubMed  Google Scholar 

  • Chuang MH, Wu MS, Lo WL, Lin JT, Wong CH, Chiou SH (2006) The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc Natl Acad Sci USA 103:2552–2557

    Article  PubMed  CAS  Google Scholar 

  • Di Giulio M (2003a) The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol 57:721–730

    Google Scholar 

  • Di Giulio M (2003b) The ancestor of the Bacteria domain was a hyperthermophile. J Theoret Biol 224:277–283

    Google Scholar 

  • Di Giulio M (2006) Nanoarchaeum equitans is a living fossil. J Theoret Biol 242:257–260

    Article  Google Scholar 

  • Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Forterre P (1996) A hot topic: the origin of hyperthermophiles. Cell 85:789–792

    Article  PubMed  CAS  Google Scholar 

  • Forterre P, Benachenhou-Lahfa N, Confalonieri F, Duguet M, Elie Ch, Labedan B (1993) The nature of the last universal ancestor and the root of the tree of life. BioSystems 28:15–32

    Article  Google Scholar 

  • Forterre P, Bouthier de la Tour C, Philippe H, Duguet M (2000) Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from Archaea to Bacteria. Trends Genet 16:152–154

    Article  PubMed  CAS  Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283:220–221

    Article  PubMed  CAS  Google Scholar 

  • Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    Article  PubMed  CAS  Google Scholar 

  • Gogarten-Boekels M, Hilario E, Gogarten JP (1994) The effects of heavy meteorite bombardment on the early evolution of life—a new look at the molecular record. Origins Life Evol Biosph 25:78–83

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  • Klenk HP, Palm P, Zillig W (1994) DNA-dependent RNA polymerases as phylogenetic marker molecules. Syst Appl Microbiol 16:638–647

    CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2001) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5:150–163

    Article  Google Scholar 

  • Ladenstein R, Ren B (2006) Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles. FEBS J 273:4170–4185

    Article  PubMed  CAS  Google Scholar 

  • Lake JA, Herbold CW, Rivera MC, Servin JA, Skophammer RG (2007) Rooting the tree of life using nonubiquitous genes. Mol Biol Evol 24:130–136

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Koonin EV (2003) Comparative genomics of archaea: how much have we learned in six years, and what’s next? Genome Biol 4:115–145

    Article  PubMed  Google Scholar 

  • Makarova KS, Koonin EV (2005) Evolutionary and functional genomics of the Archaea. Curr Opin Microbiol 8:586–594

    Article  PubMed  CAS  Google Scholar 

  • Miller SL, Lazcano A (1995) The origin of life—did it occur at high temperatures? J Mol Evol 41:689–692

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    Article  PubMed  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, et al (1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  PubMed  CAS  Google Scholar 

  • Pace NR (1991) Origin of life—facing up the physical setting. Cell 65:531–533

    Article  PubMed  CAS  Google Scholar 

  • Pedone E, Ren B, Ladenstein R, Rossi M, Bartolucci S (2004) Functional properties of the protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus. FEBS Eur J Biochem 271:3437–3448

    Article  CAS  Google Scholar 

  • Ren B, Tibbelin G, de Pascale D, Rossi M, Bartolucci S, Ladenstein R (1998) A protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus contains two thioredoxin fold units. Nat Struct Biol 7:602–611

    Article  Google Scholar 

  • Schmidt HA, Strimmer M, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Skophammer RG, Herbold CW, Rivera MC, Servin JA, Lake JA (2006) Evidence that the root of the tree of life is not within the Archaea. Mol Biol Evol 23:1648–1651

    Article  PubMed  CAS  Google Scholar 

  • Sleep NH, Zahnle KJ, Kastings JF, Morowitz NH (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342:139–142

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (1994) The lesson of archaebacteria. In: Bengtson S (ed) Early Life on Earth: Nobel Symposium No. 84. Columbia University Press, New York, pp 143–151

    Google Scholar 

  • Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc Lond B Biol Sci 361:1837–1843

    Article  PubMed  CAS  Google Scholar 

  • Tian G, Xiang S, Noiva R, Lennarz WJ, Schindelin H (2006) The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell 124:61–73

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Wächstershäuser G (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond B Biol Sci 361:1787–1808

    Article  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms, proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  PubMed  CAS  Google Scholar 

  • Wood ZA, Poole LB, Karplus PA (2001) Structure of intact AhpF reveals a mirrored thioredoxin-like active site and implies large domain rotations during catalysis. Biochemistry 13:3900–3911

    Article  Google Scholar 

  • Zhaxybayeva O, Lapierre P, Gogarten JP (2005) Ancient gene duplications and the root(s) of the tree of life. Protoplasma 227:53–64

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Monsieur Bastien Bousseau and to Drs. Celine Brochier, Peter Gogarten, and Manolo Gouy for several useful references. Support from CONACYT-Mexico (Project 50520-Q) to A.L. and (52226) to A.B. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lazcano.

Additional information

Reviewing Editor: Martin Kreitman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becerra, A., Delaye, L., Lazcano, A. et al. Protein Disulfide Oxidoreductases and the Evolution of Thermophily: Was the Last Common Ancestor a Heat-Loving Microbe?. J Mol Evol 65, 296–303 (2007). https://doi.org/10.1007/s00239-007-9005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-007-9005-0

Keywords

Navigation