Skip to main content
Log in

Metagenomics and Culture-Based Diversity Analysis of the Bacterial Community in the Zharkent Geothermal Spring in Kazakhstan

  • Original Paper
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Diversity of the microbial community in the Zharkent geothermal hot spring, located in the southeastern region of Kazakhstan, was assessed using both culture-dependent and -independent approaches. Shotgun metagenomic sequencing of DNA extracted from the spring water yielded 11,061,725 high-quality sequence reads, totaling >1,67 Gb of nucleotide sequences. Furthermore, water samples were enriched in nutrient broth at varying high temperatures, and colonies isolated by being streaked onto nutrient agar. Finally, DNA extraction and amplification, as well as sequencing and phylogenetic analysis, were conducted. Bacteria constituted more than 99.97% of the total prokaryotic abundance, with Archaea contributing only an extremely small component; Firmicutes, Proteobacteria, and Actinobacteria dominated the community. At genus level, Firmicutes reads affiliated with Desmospora, Parageobacillus, Paenibacillus, and Brevibacillus, accounting for more than 60% of total prokaryotic abundance. Eight morphologically distinct, aerobic, endospore-forming thermophilic bacteria were recovered; isolates differed significantly in substrate utilization patterns, as well as their production of thermophilic, extracellular, hydrolytic enzymes for degradation of starch, lipids, cellulose, and protein. Five strains could degrade all four macromolecular types at temperatures ranging from 55 to 75 °C. Phylogenetic analyses based on 16S rRNA gene sequences placed all isolates into the genus Geobacillus with some of them possibly representing novel species. The results indicate that this hot spring represents a rich source of novel thermophilic bacteria and potentially useful thermostable enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available in the GenBank repository, https://www.ncbi.nlm.nih.gov/genbank/. Any data generated or analyzed during this study that are not included in the published article will be available from the corresponding author on reasonable request.

References

  1. Raddadi N, Cherif A, Daffonchio D, Neifar M, Fava F (2015) Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 99(19):7907–7913. https://doi.org/10.1007/s00253-015-6874-9

    Article  CAS  PubMed  Google Scholar 

  2. DeCastro ME, Rodriguez-Belmonte E, Gonzalez-Siso MI (2016) Metagenomics of thermophiles with a focus on discovery of novel thermozymes. Front in Microbiol 7:1521. https://doi.org/10.3389/fmicb.2016.01521

    Article  Google Scholar 

  3. Khalil A (2011) Screening and characterization of thermophilic bacteria (lipase, cellulase and amylase producers) from hot springs in Saudi Arabia. J Food Agric Environ 9(2):672–675. https://doi.org/10.1234/4.2011.2187

    Article  Google Scholar 

  4. Khalil A (2011) Isolation and characterization of three thermophilic bacterial strains (lipase, cellulose and amylase producers) from hot springs in Saudi Arabia. Afr J of Biotechnol 10(44):8834–8839. https://doi.org/10.5897/AJB10.1907

    Article  CAS  Google Scholar 

  5. Panda MK, Sahu MK, Tayung K (2013) Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Iran J Microbiol 5(2):159–165

    PubMed  PubMed Central  Google Scholar 

  6. Reysenbach AL, Wickham GS, Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60(6):2113–2119. https://doi.org/10.1128/AEM.60.6.2113-2119.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Slobodkin A, Reysenbach AL, Mayer F, Wiegel J (1997) Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov. Int J Syst Bacteriol 47(4):969–974. https://doi.org/10.1099/00207713-47-4-969

    Article  CAS  PubMed  Google Scholar 

  8. Slobodkin A, Reysenbach AL, Strutz N, Dreier M, Wiegel J (1997) Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 47(2):541–547. https://doi.org/10.1099/00207713-47-2-541

    Article  CAS  PubMed  Google Scholar 

  9. Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R et al (1998) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64(10):3576–3583. https://doi.org/10.1128/AEM.64.10.3576-3583.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reysenbach AL, Ehringer H, Hershberger K (2000) Microbial diversity at 83 degrees C in Calcite springs, Yellowstone national park: another environment where the aquificales and “Korarchaeota” coexist. Extremophiles 4(1):61–67. https://doi.org/10.1007/s007920050008

    Article  CAS  PubMed  Google Scholar 

  11. Adiguzel A, Ozkan H, Baris O, Inan K, Gulluce M, Sahin F (2009) Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J Microbiol Methods 79(3):321–328. https://doi.org/10.1016/j.mimet.2009.09.026

    Article  CAS  PubMed  Google Scholar 

  12. Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E (2001) A polyphasic taxonomic study of thermophilic bacilli from shallow, marine vents. Syst Appl Microbiol 24(4):572–587. https://doi.org/10.1078/0723-2020-00054

    Article  CAS  PubMed  Google Scholar 

  13. Derekova A, Mandeva R, Kambourova M (2008) Phylogenetic diversity of thermophilic carbohydrate degrading bacilli from Bulgarian hot springs. World J Microbiol Biotechnol 24:1697–1702. https://doi.org/10.1007/s11274-008-9663-0

    Article  CAS  Google Scholar 

  14. Sievert SM, Ziebis W, Kuever J, Sahm K (2000) Relative abundance of archaea and bacteria along a thermal gradient of a shallow-water hydrothermal vent quantified by rRNA slot-blot hybridization. MicroSoc 146(6):1287–1293. https://doi.org/10.1099/00221287-146-6-1287

    Article  CAS  Google Scholar 

  15. Verma A, Gupta M, Shirkot P (2014) Isolation and characterization of thermophilic bacteria in natural hot water springs of Himachal Pradesh (India). Bioscan 9:947–952. https://doi.org/10.1007/s13213-014-0984-y

    Article  CAS  Google Scholar 

  16. Niederberger TD, Ronimus RS, Morgan HW (2008) The microbial ecology of a high-temperature near-neutral spring situated in Rotorua New Zealand. Microbiol Res 163(5):594–603. https://doi.org/10.1016/j.micres.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  17. López-López O, Cerdán ME, González-Siso MI (2013) Hot spring metagenomics. Life 3(2):308–320. https://doi.org/10.3390/life3020308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Giampaoli S, Berti A, Di Maggio RM, Pilli E, Valentini A, Valeriani F et al (2014) The environmental biological signature: NGS profiling for forensic comparison of soils. Forensic Sci Int 240:41–47. https://doi.org/10.1016/j.forsciint.2014.02.028

    Article  CAS  PubMed  Google Scholar 

  19. White RA, Chan AM, Gavelis GS, Leander BS, Brady AL, Slater GF et al (2016) Metagenomic analysis suggests modern freshwater microbialites harbor a distinct core microbial community. Front Microbiol 6:1531. https://doi.org/10.3389/fmicb.2015.01531

    Article  PubMed  PubMed Central  Google Scholar 

  20. Antranikian G, Egorova K (2007) Extremophiles, a unique resource of biocatalysts for industrial biotechnol. Physiology and biochemistry of extremophiles. American Society of Microbiology, Washington, pp 361–406. https://doi.org/10.1128/9781555815813.ch27

    Chapter  Google Scholar 

  21. Cowan DA (1991) Industrial enzymes in biotechnol. The science and the business. Harwood Academic, Amsterdam, pp 311–340

    Google Scholar 

  22. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178(4535):703. https://doi.org/10.1038/178703a0

    Article  CAS  PubMed  Google Scholar 

  23. Wehr HM, Frank JF, Association APH (2004) Standard methods for the examination of dairy products. American Public Health Association, Washington

    Book  Google Scholar 

  24. Shaikh NM, Patel A, Mehta S, Patel N (2013) Isolation and screening of cellulolytic bacteria inhabiting different environment and optimization of cellulase production. Univers J Environ Res Technol 3(1):39–49

    CAS  Google Scholar 

  25. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol 57(5):503–507. https://doi.org/10.1007/s00284-008-9276-8

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24(6):710–715. https://doi.org/10.1139/m78-119

    Article  CAS  PubMed  Google Scholar 

  27. Woese CR, Gutell R, Gupta R, Noller HF (1983) Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 47(4):621–669. https://doi.org/10.1128/MMBR.47.4.621-669.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peake I (1989) The polymerase chain reaction. J Clin Pathol 42(7):673–676. https://doi.org/10.1136/jcp.42.7.673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yassin AF, Hupfer H, Klenk HP, Siering C (2009) Desmospora activa gen. nov., sp. nov., a thermoactinomycete isolated from sputum of a patient with suspected pulmonary tuberculosis, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006. Int J Syst Evol Microbiol 59(3):454–459. https://doi.org/10.1099/ijs.0.001362-0

    Article  CAS  PubMed  Google Scholar 

  30. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3(6):510–516. https://doi.org/10.1038/nrmicro1161

    Article  CAS  PubMed  Google Scholar 

  31. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecule 4(1):117–139. https://doi.org/10.3390/biom4010117

    Article  CAS  Google Scholar 

  33. Kumar L, Awasthi G, Singh BJB (2011) Extremophiles: a novel source of industrially important enzymes. Biotechnology 10(2):121–135. https://doi.org/10.3923/biotech.2011.121.135

    Article  CAS  Google Scholar 

  34. Huang Q, Dong CZ, Dong RM, Jiang H, Wang S, Wang G et al (2011) Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles 15(5):549–563. https://doi.org/10.1007/s00792-011-0386-z

    Article  PubMed  Google Scholar 

  35. Kaushal G, Kumar J, Sangwan RS, Singh SP (2018) Metagenomic analysis of geothermal water reservoir sites exploring carbohydrate-related thermozymes. Int J Biol Macromol 119:882–895. https://doi.org/10.1016/j.ijbiomac.2018.07.196

    Article  CAS  PubMed  Google Scholar 

  36. Schleifer K-H (2009) Phylum XIII. Firmicutes Gibbons and Murray, 5 (Firmacutes [sic] Gibbons and Murray 1978, 5). Bergey’s manual® of syst bacter. Springer, Berlin, pp 19–1317

    Google Scholar 

  37. Zeigler DR (2005) Application of a recN sequence similarity analysis to the identification of species within the bacterial genus Geobacillus. Int J Syst Evol Microbiol 55(Pt 3):1171–1179. https://doi.org/10.1099/ijs.0.63452-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Molecular Imaging Center and the ICP-Laboratory at the University of Bergen for their excellent service in performing electron microscopy and chemical analyses for this study, respectively.

Funding

The research was supported by the Eurasia program of the Norwegian Agency for International Cooperation and Quality Enhancement in Higher Education (Diku) under Project CPEA-LT-2017/10061.

Author information

Authors and Affiliations

Authors

Contributions

AM, NKB, AK contributed to conceptualization and methodology; AM, RJL, NKB, and AK were involved in formal analysis and investigation; AM, NKB, AK, IS were involved in writing––original draft preparation; AM and NKB were involved in writing––review and editing; AK and NKB contributed to funding acquisition; AK, IS, and NKB performed supervision.

Corresponding author

Correspondence to Aida Kistaubayeva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for Publication

All the authors consent to publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashzhan, A., Javier-López, R., Kistaubayeva, A. et al. Metagenomics and Culture-Based Diversity Analysis of the Bacterial Community in the Zharkent Geothermal Spring in Kazakhstan. Curr Microbiol 78, 2926–2934 (2021). https://doi.org/10.1007/s00284-021-02545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02545-2

Navigation