Skip to main content
Log in

Effects of dietary l-glutamine supplementation on specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Little is known about effects of dietary glutamine supplementation on specific and general defense responses in a vaccine-immunized animal model. Thus, this study determined roles for dietary glutamine supplementation in specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. The measured variables included: (1) the production of pathogen-specific antibodies; (2) mRNA levels for pro-inflammatory cytokines, toll-like receptors and anti-oxidative factors; and (3) the distribution of P. multocida in tissues and the expression of its major virulence factors in vivo. Dietary supplementation with 0.5 % glutamine had a better protective role than 1 or 2 % glutamine against P. multocida infection in vaccine-immunized mice, at least partly resulting from its effects in modulation of general defense responses. Dietary glutamine supplementation had little effects on the production of P. multocida-specific antibodies. Compared to the non-supplemented group, dietary supplementation with 0.5 % glutamine had no effect on bacterial burden in vivo but decreased the expression of major virulence factors in the spleen. Collectively, supplementing 0.5 % glutamine to a conventional diet provides benefits in vaccine-immunized mice by enhancing general defense responses and decreasing expression of specific virulence factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CAT:

Catalase

CuZnSOD:

Superoxide dismutases

GPx-1:

Glutathione peroxidase 1

Ig:

Immunoglobulin

IL:

Interleukin

TNF:

Tumor necrosis factor

NQ:

1,4-Naphthoquinone

References

  • Boutry C, Matsumoto H, Bos C et al (2012) Decreased glutamate, glutamine and citrulline concentrations in plasma and muscle in endotoxemia cannot be reversed by glutamate or glutamine supplementation: a primary intestinal defect? Amino Acids 43:1485–1498

    Article  PubMed  CAS  Google Scholar 

  • Bronte V, Pittet MJ (2013) The spleen in local and systemic regulation of immunity. Immunity 39:806–818

    Article  PubMed  CAS  Google Scholar 

  • Caroprese M, Albenzio M, Marino R et al (2013) Dietary glutamine enhances immune responses of dairy cows under high ambient temperature. J Dairy Sci 96:3002–3011

    Article  PubMed  CAS  Google Scholar 

  • Chiu M, Tarditos S, Barilli A et al (2012) Glutamine stimulates mTORC1 independent of the cell content of essential amino acids. Amino Acids 43:2561–2567

    Article  PubMed  CAS  Google Scholar 

  • Cruzat VF, Bittencourt A, Scomazzon SP et al (2014) Oral free and dipeptide forms of glutamine supplementation attenuate oxidative stress and inflammation induced by endotoxemia. Nutrition 30:602–611

    Article  PubMed  CAS  Google Scholar 

  • Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2013) l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45:501–512

    Article  PubMed  CAS  Google Scholar 

  • Dorner T, Radbruch A (2007) Antibodies and B cell memory in viral immunity. Immunity 27:384–392

    Article  PubMed  Google Scholar 

  • Guttman JA, Finlay BB (2008) Subcellular alterations that lead to diarrhea during bacterial pathogenesis. Trends Microbiol 16:535–542

    Article  PubMed  CAS  Google Scholar 

  • Guttman JA, Finlay BB (2009) Tight junctions as targets of infectious agents. Biochim Biophys Acta 1788:832–841

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Wang L, Zhang W et al (2012) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43:1233–1242

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Wang L, Yi D et al (2013) N-Acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids 45:513–522

    Article  PubMed  CAS  Google Scholar 

  • Lai YN, Yeh SL, Lin MT et al (2004) Glutamine supplementation enhances mucosal immunity in rats with gut-derived sepsis. Nutrition 20:286–291

    Article  PubMed  CAS  Google Scholar 

  • Le Floc’h N, Otten W, Merlot E (2011) Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 41:1195–1205

    Article  PubMed  Google Scholar 

  • Li P, Yin YL, Li DF et al (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Ren WK, Liu G, Li TJ et al (2012a) Dietary supplementation with arginine and glutamine confers a positive effect in porcine circovirus-infected pig. J Food Agric Environ 10:485–490

    CAS  Google Scholar 

  • Ren WK, Yin YL, Liu G et al (2012b) Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection. Amino Acids 42:2089–2094

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ren W, Li Y, Yu X et al (2013a) Glutamine modifies immune responses of mice infected with porcine circovirus type 2. Br J Nutr 110:1053–1060

    Article  PubMed  CAS  Google Scholar 

  • Ren W, Wu M, Luo W et al (2013b) Dietary supplementation with proline confers a positive effect in both porcine circovirus-infected pregnant and non-pregnant mice. Br J Nutr 110:1492–1499

    Article  PubMed  CAS  Google Scholar 

  • Ren W, Zou L, Ruan Z et al (2013c) Dietary l-proline supplementation confers immunostimulatory effects on inactivated Pasteurella multocida vaccine immunized mice. Amino Acids 45:555–561

    Article  PubMed  CAS  Google Scholar 

  • Ren WK, Liu SP, Chen S et al (2013d) Dietary l-glutamine supplementation increases Pasteurella multocida burden and the expression of its major virulence factors in mice. Amino Acids 45:947–955

    Article  PubMed  CAS  Google Scholar 

  • Ren WK, Luo W, Wu MM et al (2013e) Dietary l-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus. Amino Acids 45:479–488

    Article  PubMed  CAS  Google Scholar 

  • Ren WK, Yin J, Zhu XP et al (2013f) Glutamine on Intestinal Inflammation: a mechanistic perspective. Eur J Inflamm 11:315–326

    CAS  Google Scholar 

  • Ren WK, Yu R, Liu G et al (2013g) DNA vaccine encoding the major virulence factors of Shiga toxin type 2e (Stx2e)-expressing Escherichia coli induces protection in mice. Vaccine 31:367–372

    Article  PubMed  CAS  Google Scholar 

  • Ren WK, Zou LX, Li NZ et al (2013h) Dietary arginine supplementation enhances immune responses to inactivated Pasteurella multocida vaccination in mice. Br J Nutr 109:867–872

    Article  PubMed  CAS  Google Scholar 

  • Ren W, Chen S, Yin J, Duan J, Li T, Liu G, Feng Z, Tan B, Yin Y, Wu G (2014a) Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. J Nutr 144:988–995

    Article  PubMed  CAS  Google Scholar 

  • Ren W, Yin J, Wu M et al (2014b) Serum amino acids profile and the beneficial effects of l-arginine or l-glutamine supplementation in dextran sulfate sodium colitis. PLoS One 9(2):e88335

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezaei R, Wang WW, Wu ZL et al (2013) Biochemical and physiological bases for utilization of dietary amino acids by young pigs. J Anim Sci Biotech 4:7

    Article  CAS  Google Scholar 

  • Sawant OB, Ramadoss J, Hankins GD et al (2014) Effects of l-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol. Amino Acids. doi:10.1007/s00726-014-1751-x

  • Wang J, Chen L, Li P et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Wang WW, Wu ZL, Dai ZL et al (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45:463–477

    Article  PubMed  Google Scholar 

  • Washburn SE, Sawant OB, Lunde ER et al (2013) Acute alcohol exposure, acidemia or glutamine administration impacts amino acid homeostasis in ovine maternal and fetal plasma. Amino Acids 45:543–554

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wei JW, Carroll RJ, Harden KK et al (2012) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42:2031–2035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2013a) Amino acids: biochemistry and nutrition. CRC, Boca Raton

    Book  Google Scholar 

  • Wu G (2013b) Functional amino acids in nutrition and health. Amino Acids 45:407–411

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Field CJ, Marliss EB (1991a) Glutamine and glucose metabolism in rat splenocytes and mesenteric lymph node lymphocytes. Am J Physiol Endocrinol Metab 260:E141–E147

    CAS  Google Scholar 

  • Wu G, Field CJ, Marliss EB (1991b) Elevated glutamine metabolism in splenocytes from spontaneously diabetic BB rats. Biochem J 274:49–54

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu G, Field CJ, Marliss EB (1991c) Glutamine and glucose metabolism in thymocytes from normal and spontaneously diabetic BB rats. Biochem Cell Biol 69:801–808

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Field CJ, Marliss EB (1991d) Glucose and glutamine metabolism in rat macrophages: enhanced glycolysis and unaltered glutaminolysis in spontaneously diabetic BB rats. Biochim Biophys Acta 1115:166–173

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Field CJ, Marliss EB (1992) Enhanced glutamine and glucose metabolism in cultured rat splenocytes stimulated by phorbol myristate acetate plus ionomycin. Metabolism 41:982–988

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004) Arginine nutrition in neonatal pigs. J Nutr 134:2783S–2790S

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2011a) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2011b) Important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC et al (2013a) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Wu ZL, Dai ZL et al (2013b) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Wang W, Yao K et al (2013c) Effects of dietary arginine and glutamine on alleviating the impairment induced by deoxynivalenol stress and immune relevant cytokines in growing pigs. PLoS One 8(7):e69502

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu G, Bazer FW, Dai ZL et al (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  Google Scholar 

  • Xi P, Jiang Z, Zheng C et al (2011) Regulation of protein metabolism by glutamine: implications for nutrition and health. Front Biosci (Landmark Ed) 16:578–597

    Article  CAS  Google Scholar 

  • Xu CL, Sun R, Qiao XJ et al (2014) Protective effect of glutamine in intestinal injury and bacterial community in rats exposed to hypobaric hypoxia environment. World J Gastroenterol 20:4662–46674

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yeh SL, Lai YN, Shang HF et al (2004) Effects of glutamine supplementation on innate immune response in rats with gut-derived sepsis. Br J Nutr 91:423–429

    Article  PubMed  CAS  Google Scholar 

  • Zhong X, Li W, Huang X et al (2012) Effects of glutamine supplementation on the immune status in weaning piglets with intrauterine growth retardation. Arch Anim Nutr 66:347–356

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Zhang P, Deng G et al (2012) Improvements of immune status, intestinal integrity and gain performance in the early-weaned calves parenterally supplemented with L-alanyl-l-glutamine dipeptide. Vet Immunol Immunopathol 145:134–142

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by National Basic Research Project (2013CB127301) MATS-Beef Cattle Yak system (CARS-38), National Natural Science Foundation of China (31272463), and Texas A&M AgriLife Research (H-82000).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenkai Ren.

Additional information

S. Chen and S. Liu contributed equally to the present study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Liu, S., Zhang, F. et al. Effects of dietary l-glutamine supplementation on specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. Amino Acids 46, 2365–2375 (2014). https://doi.org/10.1007/s00726-014-1789-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1789-9

Keywords

Navigation