Skip to main content
Log in

l-Glutamine regulates amino acid utilization by intestinal bacteria

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Catabolism of amino acids (AA) by intestinal bacteria greatly affects their bioavailability in the systemic circulation and the health of animals and humans. This study tests the novel hypothesis that l-glutamine regulates AA utilization by luminal bacteria of the small intestine. Pure bacterial strains (Streptococcus sp., Escherichia coli and Klebsiella sp.) and mixed bacterial cultures derived from the jejunum or ileum of pigs were cultured in the presence of 0–5 mM l-glutamine under anaerobic conditions. After 3 h of incubation, samples were taken for the determination of AA utilization. Results showed concentration-dependent increases in the utilization of glutamine in parallel with the increased conversion of glutamine into glutamate in all the bacteria. Complete utilization of asparagine, aspartate and serine was observed in pure bacterial strains after the 3-h incubation. The addition of glutamine reduced the net utilization of asparagine by both jejunal and ileal mixed bacteria. Net utilization of lysine, leucine, valine, ornithine and serine by jejunal or ileal mixed bacteria decreased with the addition of glutamine in a concentration-dependent manner. Collectively, glutamine dynamically modulates the bacterial metabolism of the arginine family of AA as well as the serine and aspartate families of AA and reduced the catabolism of most AA (including nutritionally essential and nonessential AA) in jejunal or ileal mixed bacteria. The beneficial effects of glutamine on gut nutrition and health may involve initiation of the signaling pathways related to AA metabolism in the luminal bacteria of the small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AA:

Amino acids

CFU:

Colony forming unit

EAA:

Nutritionally essential amino acid

References

  • Almaas E (2007) Optimal flux patterns in cellular metabolic networks. Chaos 17:026107

    Article  PubMed  Google Scholar 

  • Almaas E, Kovács B, Vicsek T et al (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427:839–843

    Article  PubMed  CAS  Google Scholar 

  • Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139:821–825

    Article  PubMed  CAS  Google Scholar 

  • Brosnan JT, Brosnan ME (2012) Glutamate: a truly functional amino acid. Amino Acids (in press)

  • Burnside K, Lembo A, de los Reyes M et al (2010) Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS ONE 5:e11071

    Article  PubMed  Google Scholar 

  • Burrin DG, Davis TA (2004) Proteins and amino acids in enteral nutrition. Curr Opin Clin Nutr Metab Care 7:79–87

    Article  PubMed  CAS  Google Scholar 

  • Chaussee MS, Somerville GA, Reitzer L et al (2003) Rgg coordinates virulence factor synthesis and metabolism in Streptococcus pyogenes. J Bacteriol 185:6016–6024

    Article  PubMed  CAS  Google Scholar 

  • Chen GJ, Russell JB (1989) Transport of glutamine by Streptococcus bovis and conversion of glutamine to pyroglutamic acid and ammonia. J Bacteriol 171:2981–2985

    PubMed  CAS  Google Scholar 

  • Chen LX, Yin YL, Jobgen WS et al (2007) In vitro oxidation of essential amino acids by jejunal mucosal cells of growing pigs. Livest Sci 109:19–23

    Article  Google Scholar 

  • Chen LX, Li P, Wang JJ et al (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152

    Article  PubMed  CAS  Google Scholar 

  • Claus SP, Tsang TM, Wang Y et al (2008) Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol Syst Biol 4:219

    Article  PubMed  Google Scholar 

  • Dai ZL, Zhang J, Wu G et al (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201–1215

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2011a) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids. doi:10.1007/s00726-011-0846-x

    Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2011b) Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids. doi:10.1007/s00726-011-1067-z

    Google Scholar 

  • Dai ZL, G Wu, Zhu WY (2011c) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Google Scholar 

  • Dhavala P, Krasotkina J, Dubreuil C et al (2008) Expression, purification and crystallization of Helicobacter pylori l-asparaginase. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 64:740–742

    Article  CAS  Google Scholar 

  • Eller C, Crabill MR, Bryant MP (1971) Anaerobic roll tube media for nonselective enumeration and isolation of bacteria. Appl Microbiol 22:522–529

    PubMed  CAS  Google Scholar 

  • Fernández M, Zúñiga M (2006) Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol 32:155–183

    Article  PubMed  Google Scholar 

  • Flynn NE, Patryak M, Seely J et al (2010) Glycine oxidation and conversion into amino acids in Saccharomyces cerevisiae and Candida albicans. Amino Acids 39:605–608

  • Forchhammer K (2007) Glutamine signalling in bacteria. Front Biosci 12:358–370

    Article  PubMed  CAS  Google Scholar 

  • Fuller MF, Reeds PJ (1998) Nitrogen cycling in the gut. Annu Rev Nutr 18:385–411

    Article  PubMed  CAS  Google Scholar 

  • Haynes TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Google Scholar 

  • Hou YQ, Wang L, Zhang W et al (2011) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids. doi:10.1007/s00726-011-1191-9

  • Kalhan SC, Bier DM (2008) Protein and amino acid metabolism in the human newborn. Annu Rev Nutr 28:389–410

    Article  PubMed  CAS  Google Scholar 

  • Kudsk KA (2006) Immunonutrition in surgery and critical care. Annu Rev Nutr 26:463–479

    Article  PubMed  CAS  Google Scholar 

  • Lara AR, Taymaz-Nikerel H, Mashego MR et al (2009) Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses. Biotechnol Bioeng 104:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Rezaei R, Li P et al (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Metges CC, Petzke KJ (2005) Utilization of essential amino acids synthesized in the intestinal microbiota of monogastric mammals. Br J Nutr 94:621–622

    Article  PubMed  CAS  Google Scholar 

  • Montagne L, Piel C, Lallès JP (2004) Effect of diet on mucin kinetics and composition: nutrition and health implications. Nutr Rev 62:105–114

    Article  PubMed  CAS  Google Scholar 

  • Ollenschläger G, Roth E, Linkesch W et al (1988) Asparaginase-induced derangements of glutamine metabolism: the pathogenetic basis for some drug-related side-effects. Eur J Clin Invest 18:512–516

    Article  PubMed  Google Scholar 

  • Prüß BM, Nelms JM, Park C et al (1994) Mutations in NADH: ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J Bacteriol 176:2143–2150

    PubMed  Google Scholar 

  • Reeds PJ, Burrin DG (2001) Glutamine and the bowel. J Nutr 131(9 Suppl):2505S–2508S

    PubMed  CAS  Google Scholar 

  • Ren WK, Luo W, Wu MM et al (2011) Dietary l-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus. Amino Acids. doi:10.1007/s00726-011-1134-5

    Google Scholar 

  • Rhoads MJ, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Samal A (2008) Conservation of high-flux backbone in alternate optimal and near-optimal flux distributions of metabolic networks. Syst Synth Biol 2:83–93

    Article  PubMed  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2011) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids. doi:10.1007/s00726-011-1168-8

  • Satterfield MC, Dunlap KA, Keisler DH et al (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids. doi:10.1007/s00726-012-1235-9

  • Sawers G (1998) The anaerobic degradation of l-serine and l-threonine in enterobacteria: networks of pathways and regulatory signals. Arch Microbiol 171:1–5

    Article  PubMed  CAS  Google Scholar 

  • Shiloach J, Reshamwala S, Noronha SB et al (2010) Analyzing metabolic variations in different bacterial strains, historical perspectives and current trends—example E. coli. Curr Opin Biotechnol 21:21–26

    Article  PubMed  CAS  Google Scholar 

  • Stoll B, Henry J, Reeds PJ et al (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128:606–614

    PubMed  CAS  Google Scholar 

  • Van Acker BAC, Hulsewe KWE, Wagenmarkers AJM et al (1998) Absence of glutamine isotopic steady state: implications for the assessment of whole-body glutamine production rate. Clin Sci 95:339–346

    Article  PubMed  Google Scholar 

  • Vining LC, Magasanik B (1981) Serine utilization by Klebsiella aerogenes. J Bacteriol 146:647–655

    PubMed  CAS  Google Scholar 

  • Wallace RJ (1996) Ruminal microbial metabolism of peptides and amino acids. J Nutr 126:1326S–1334S

    PubMed  CAS  Google Scholar 

  • Wang X, Qiao S, Yin Y et al (2007) A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs. J Nutr 137:1442–1446

    PubMed  CAS  Google Scholar 

  • Wang JJ, Chen LX, Li P et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    PubMed  CAS  Google Scholar 

  • Watford M (1999) Is there a requirement for glutamine catabolism in the small intestine. Br J Nutr 81:261–262

    PubMed  CAS  Google Scholar 

  • Williams BA, Bosch MW, Boer H et al (2005) An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim Feed Sci Technol 123–124:445–462

    Article  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol Gastrointest Liver Physiol 272:G1382–G1390

    Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    PubMed  CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Borbolla AG, Knabe DA (1994) The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J Nutr 124:2437–2444

    PubMed  CAS  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    PubMed  CAS  Google Scholar 

  • Wu G, Davis PK, Flynn NE et al (1997) Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr 127:2342–2349

    PubMed  CAS  Google Scholar 

  • Wu G, Collins JK, Perkins-Veazie P et al (2007a) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2007b) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2011a) Important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2011b) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Google Scholar 

  • Xi PB, Jiang ZY, Zheng CT et al (2011a) Regulation of protein metabolism by glutamine: implications for nutrition and health. Front Biosci 16:578–597

    Article  CAS  Google Scholar 

  • Xi PB, Jiang ZY, Dai ZL et al (2011b) Regulation of protein turnover by l-glutamine in porcine intestinal epithelial cells. J Nutr Biochem. doi:10.1016/j.jnutbio.2011.05.009

    PubMed  Google Scholar 

  • Yao K, Yin YL, Li XL et al (2011) Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids. doi:10.1007/s00726-011-1060-6

  • Yin YL, Huang RL, Li TJ et al (2010) Amino acid metabolism in the portal-drained viscera of young pigs: effects of dietary supplementation with chitosan and pea hull. Amino Acids 39:1581–1587

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (30810103909), the National Basic Research Program of China (2004CB117500-4), and Texas AgriLife Research Hatch Project (H-8200). We are grateful to Dr. J. Fleming, Dr. H. J. Gao, and Dr. J. J. Wang for technical assistance and helpful discussion. Z.-L. Dai thanks the China Scholarship Council for support of his study at Texas A&M University between 17 February 2009 and 28 February 2010.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao-Lai Dai, Guoyao Wu or Wei-Yun Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, ZL., Li, XL., Xi, PB. et al. l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45, 501–512 (2013). https://doi.org/10.1007/s00726-012-1264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1264-4

Keywords

Navigation