Skip to main content
Log in

Impacts of arginine nutrition on embryonic and fetal development in mammals

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Embryonic loss and intrauterine growth restriction (IUGR) are significant problems in humans and other animals. Results from studies involving pigs and sheep have indicated that limited uterine capacity and placental insufficiency are major factors contributing to suboptimal reproduction in mammals. Our discovery of the unusual abundance of the arginine family of amino acids in porcine and ovine allantoic fluids during early gestation led to the novel hypothesis that arginine plays an important role in conceptus (embryo and extra-embryonic membranes) development. Arginine is metabolized to ornithine, proline, and nitric oxide, with each having important physiological functions. Nitric oxide is a vasodilator and angiogenic factor, whereas ornithine and proline are substrates for uterine and placental synthesis of polyamines that are key regulators of gene expression, protein synthesis, and angiogenesis. Additionally, arginine activates the mechanistic (mammalian) target of rapamycin cell signaling pathway to stimulate protein synthesis in the placenta, uterus, and fetus. Thus, dietary supplementation with 0.83 % l-arginine to gilts consuming 2 kg of a typical gestation diet between either days 14 and 28 or between days 30 and 114 of pregnancy increases the number of live-born piglets and litter birth weight. Similar results have been reported for gestating rats and ewes. In sheep, arginine also stimulates development of fetal brown adipose tissue. Furthermore, oral administration of arginine to women with IUGR has been reported to enhance fetal growth. Collectively, enhancement of uterine as well as placental growth and function through dietary arginine supplementation provides an effective solution to improving embryonic and fetal survival and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADC:

Arginine decarboxylase

AGAT:

Arginine:glycine amidinotransferase

CAT:

Cationic amino acid transporter

α-DFMO:

dl-α-Difluoromethylornithine

GE:

Glandular epithelium

IUGR:

Intrauterine growth restriction

LE:

Luminal epithelium

MTOR:

Mammalian target of rapamycin

NO:

Nitric oxide

NOS:

NO synthase

ODC:

Ornithine decarboxylase

P5C:

Pyrroline-5-carboxylate

SAM:

S-adenosylmethionine

References

  • Bastida CM, Tejada F, Cremades A et al (2002) The preovulatory rise of ovarian ornithine decarboxylase is required for progesterone secretion by the corpus luteum. Biochem Biophys Res Commun 293:106–111

    Article  PubMed  CAS  Google Scholar 

  • Bastida CM, Cremades A, Castells MT et al (2005) Influence of ovarian ornithine decarboxylase in folliculogenesis and luteinization. Endocrinology 146:666–674

    Article  PubMed  CAS  Google Scholar 

  • Battaglia C, Salvatori M, Maxia N et al (1999) Adjuvant l-arginine treatment for in vitro fertilization in poor responder patients. Hum Reprod 14:1690–1697

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Thatcher WW (1977) Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2α by uterine endometrium. Prostaglandins 14:397–401

    PubMed  CAS  Google Scholar 

  • Bazer FW, Thatcher WW, Martinat-Botte F et al (1988) Conceptus development in Large White and prolific Chinese Meishan pigs. J Reprod Fertil 84:37–42

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Burghardt RC, Johnson GA et al (2008) Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways. Reprod Biol 8:179–211

    Article  PubMed  Google Scholar 

  • Bazer FW, Spencer TE, Johnson GA et al (2009a) Comparative aspects of implantation. Reproduction 138:195–209

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Spencer TE, Johnson GA (2009b) Interferons and uterine receptivity. Sem Reprod Med 27:90–102

    Article  CAS  Google Scholar 

  • Bazer FW, Wu G, Spencer TE et al (2010) Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod 16:135–152

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Wu G, Johnson GA et al (2011) Uterine histotroph and conceptus development: select nutrients and secreted phosphoprotein 1 affect MTOR cell signaling in ewes. Biol Reprod 85:1094–1107

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Song GW, Kim JY et al (2012a) Uterine biology in sheep and pigs. J Anim Sci Biotech 3:23

    Article  Google Scholar 

  • Bazer FW, Song GH, Kim JY et al (2012b) Mechanistic mammalian target of rapamycin (MTOR) cell signaling: effects of select nutrients and secreted phosphoprotein 1 on development of mammalian conceptuses. Mol Cell Endocrinol 354:22–33

    Article  PubMed  CAS  Google Scholar 

  • Bérard J, Bee G (2010) Effects of dietary l-arginine supplementation to gilts during early gestation on foetal survival, growth and myofiber formation. Animal 4:1680–1687

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Article  PubMed  CAS  Google Scholar 

  • Burnett TG, Tash JS, Hunt JS (2002) Investigation of the role of nitric oxide synthase 2 in pregnancy using mutant mice. Reproduction 124:49–57

    Article  PubMed  CAS  Google Scholar 

  • Campbell R (2009) Pork CRC—NZ seminar series: arginine and reproduction. http://www/nzpib.co.nz

  • da Silva RP, Nissim I, Brosnan ME et al (2009) Creatine synthesis:hepatic metabolism of guanidino-acetate and creatine in the rat in vitro and in vivo. Am J Physiol Endocrinol Metab 296:E256–E261

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Wu G, Zhu WY (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012a) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42:1597–1608

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012b) Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids 43:233–244

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Wu ZL, Yang Y et al (2013) Nitric oxide and energy metabolism in mammals. BioFactors. doi:10.1002/biof.1099

    PubMed  Google Scholar 

  • De Blasio M, Roberts C, Owens J et al (2009) Effect of dietary arginine supplementation during gestation on litter size of gilts and sows. http://www.australianpork.com.au

  • Dekaney CM, Wu G, Jaeger LA (2003) Gene expression and activity of enzymes in the arginine biosynthetic pathway in porcine fetal small intestine. Pediatr Res 53:274–280

    Article  PubMed  CAS  Google Scholar 

  • Devés R, Boyd CA (1998) Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev 78:487–545

    PubMed  Google Scholar 

  • Duggavathi R, Murphy BD (2009) Ovulation signals. Science 324:890–891

    Article  PubMed  CAS  Google Scholar 

  • Duggavathi R, Volle DH, Mataki C et al (2008) Liver receptor homolog 1 is essential for ovulation. Genes Dev 22:1871–1876

    Article  PubMed  CAS  Google Scholar 

  • Erb RE, Tillson SA, Hodgen GD et al (1970) Urinary creatinine as an index compound for estimating rate of excretion of steroids in the domestic sow. J Anim Sci 30:79–85

    PubMed  CAS  Google Scholar 

  • Fazleabas AT (2007) Physiology and pathology of implantation in the human and nonhuman primate. Semin Reprod Med 25:405–409

    Article  PubMed  Google Scholar 

  • Fozard JR, Part ML, Prakash NJ et al (1980) l-ornithine decarboxylase: an essential role in early mammalian embryogenesis. Science 208:505–508

    Article  PubMed  CAS  Google Scholar 

  • Gao HJ, Wu G, Spencer TE et al (2009a) Select nutrients in the ovine uterine lumen: I. Amino acids, glucose and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol Reprod 80:86–93

    Article  PubMed  CAS  Google Scholar 

  • Gao HJ, Wu G, Spencer TE et al (2009b) Select nutrients in the ovine uterine lumen: III. Expression of cationic amino acid transporters in ovine uterus and peri-implantation conceptuses. Biol Reprod 80:602–609

    Article  PubMed  CAS  Google Scholar 

  • Gao HJ, Wu G, Spencer TE et al (2009c) Select nutrients in the ovine uterine lumen: V. Nitric oxide synthase, GTP cyclohydrolase and ornithine decarboxylase in ovine uteri and peri-implantation conceptuses. Biol Reprod 81:67–76

    Article  PubMed  CAS  Google Scholar 

  • Gao KG, Jiang ZY, Lin YC et al (2012) Dietary l-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids 42:2207–2214

    Article  PubMed  CAS  Google Scholar 

  • Geisert RD, Yelich JV (1997) Regulation of conceptus development and attachment in pigs. J Reprod Fertil Suppl 52:133–149

    PubMed  CAS  Google Scholar 

  • Geisert RD, Brookbank JW, Roberts RM et al (1982) Establishment of pregnancy in the pig: II. Cellular remodeling of the porcine blastocyst during elongation on day 12 of pregnancy. Biol Reprod 27:941–955

    Article  PubMed  CAS  Google Scholar 

  • Go GW, Wu G, Silvey DT et al (2012) Lipid metabolism in pigs fed supplemental conjugated linoleic acid and/or dietary arginine. Amino Acids 43:1713–1726

    Article  PubMed  CAS  Google Scholar 

  • Greiner L, Usry JL, Neill C et al (2012) The evaluation of supplemental l-arginine during gestation on sow reproductive performance. J Anim Sci 90(Suppl 2):33–34 (abstract)

    Google Scholar 

  • Gui S, Jia J, Niu X et al (2013) Arginine supplementation for improving maternal and neonatal outcomes in hypertensive disorder of pregnancy: a systematic review. J Renin Angiotensin Aldosterone Syst (Epub ahead of print)

  • Henderson KM, McNatty KP (1975) A biochemical hypothesis to explain the mechanism of luteal regression. Prostaglandins 9:779–797

    PubMed  CAS  Google Scholar 

  • Jablonka-Shariff A, Ravi S, Beltsos AN et al (1999) Abnormal estrous cyclicity after disruption of endothelial and inducible nitric oxide synthase in mice. Biol Reprod 61:171–177

    Article  PubMed  CAS  Google Scholar 

  • Johnson R (2000) History of litter size selection. www.nsif.com/conferences/2000/johnson.html

  • Johnson GA, Bazer FW, Burghardt RC et al (2009) Conceptus-uterus interactions in pigs: endometrial gene expression in response to estrogens and interferons from conceptus. Soc Reprod Fertil Suppl 66:321–332

    PubMed  CAS  Google Scholar 

  • Kim SW, Hurley WL, Wu G et al (2009) Ideal amino acid balance for sows during gestation and lactation. J Anim Sci 87:E123–E132

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Song GH, Wu G et al (2013) Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6 K-RPS6-EIF4EBP1 signal transduction pathway. Biol Reprod. doi:10.1095/biolreprod.112.105080

    Google Scholar 

  • Kong XF, Tan BE, Yin YL et al (2012) l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 23:1178–1183

    Article  PubMed  CAS  Google Scholar 

  • Kwon H, Spencer TE, Bazer FW et al (2003) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820

    Article  PubMed  CAS  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA et al (2010) Parenteral administration of l-arginine prevents fetal growth restriction in undernourished ewes. J Nutr 140:1242–1248

    Article  PubMed  CAS  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA et al (2011) Parenteral administration of l-arginine enhances fetal survival and growth in sheep carrying multiple pregnancies. J Nutr 141:849–855

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre PL, Palin MF, Chen G et al (2011) Polyamines are implicated in the emergence of the embryo from obligate diapause. Endocrinology 152:1627–1639

    Article  PubMed  CAS  Google Scholar 

  • Lei XQ, Feng CP, Liu C et al (2011) Regulation of protein expression by l-arginine in endothelial cells. Front Biosci S3:655–661

    Article  CAS  Google Scholar 

  • Li XL (2011) Regulation of porcine conceptus survival and growth by l-arginine. PhD dissertation, Texas A&M University, College Station

  • Li G, Regunathan S, Barrow CJ et al (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263:966–969

    Article  PubMed  CAS  Google Scholar 

  • Li P, Yin YL, Li D et al (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Bazer FW, Gao H et al (2009) Amino acids and gaseous signaling. Amino Acids 37:65–78

    Article  PubMed  CAS  Google Scholar 

  • Li X, Bazer FW, Johnson GA et al (2010) Dietary supplementation with 0.8% l-arginine between days 0 and 25 of gestation reduces litter size in gilts. J Nutr 140:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Rezaei R, Li P et al (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Luther JS, Windorski EJ, Schauer CS et al (2008) Impacts of l-arginine on ovarian function and reproductive performance in ewes. J Anim Sci 86(E-Suppl 2):ii

    Google Scholar 

  • Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    PubMed  CAS  Google Scholar 

  • Maul H, Longo M, Saade GR et al (2003) Nitric oxide and its role during pregnancy: from ovulation to delivery. Curr Pharm Des 9:359–380

    Article  PubMed  CAS  Google Scholar 

  • Morris SM Jr (2009) Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol 157:922–930

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (NRC) (2012) Nutrient requirements of swine. National Academy Press, Washington, DC

    Google Scholar 

  • Pallares P, Garcia-Fernandez RA, Criado LM et al (2008) Disruption of the endothelial nitric oxide synthase gene affects ovulation, fertilization and early embryo survival in a knockout mouse model. Reproduction 136:573–579

    Article  PubMed  CAS  Google Scholar 

  • Pope WF (1994) Embryonic mortality in swine. In: Zavy M, Geisert R (eds) Embryonic mortality in domestic species. CRC Press, Boca Raton, pp 53–77

    Google Scholar 

  • Ramaekers P, Kemp B, van der Lende T (2006) Progenos in sows increases number of piglets born. J Anim Sci 84(Suppl 1):394 (abstract)

    Google Scholar 

  • Ren W, Yin YL, Liu G et al (2012) Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection. Amino Acids 42:2089–2094

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LP, Caton JS, Redmer DA et al (2006) Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol (Lond) 572:51–58

    CAS  Google Scholar 

  • Rezaei R, Wang WW, Wu ZL et al (2013) Biochemical and physiological bases for utilization of dietary amino acids by young pigs. J Anim Sci Biotech 4:7

    Google Scholar 

  • Roberto da Costa RP, Costa AS, Korzekwa AJ et al (2008) Actions of a nitric oxide donor on prostaglandin production and angiogenic activity in the equine endometrium. Reprod Fertil Dev 20:674–683

    Article  PubMed  CAS  Google Scholar 

  • Rothschild MF (1996) Genetics and reproduction in the pig. Anim Reprod Sci 42:143–151

    Article  Google Scholar 

  • Salvemini D, Misko TP, Masferrer JL et al (1993) Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 90:7240–7244

    Article  PubMed  CAS  Google Scholar 

  • Satterfield MC, Bazer FW, Spencer TE et al (2010) Sildenafil citrate treatment enhances amino acid availability in the conceptus and fetal growth in an ovine model of intrauterine growth restriction. J Nutr 140:251–258

    Article  PubMed  CAS  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 43:1593–1603

    Article  CAS  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids. doi:10.1007/s00726-011-1168-8

    PubMed  Google Scholar 

  • Shen SF, Hua CH (2011) Effect of l-arginine on the expression of Bcl-2 and Bax in the placenta of fetal growth restriction. J Matern Fetal Neonatal Med 24:822–826

    Article  PubMed  CAS  Google Scholar 

  • Spencer TE, Bazer FW (2004) Conceptus signals for establishment and maintenance of pregnancy. Reprod Biol Endocrinol 2:49

    Article  PubMed  CAS  Google Scholar 

  • Town SC, Patterson JL, Pereira CZ et al (2005) Embryonic and fetal development in a commercial dam-line genotype. Anim Reprod Sci 85:301–316

    Article  PubMed  CAS  Google Scholar 

  • USDA (2009) Changes in the U.S. swine industry. National Agricultural Statistics Service home page. http://www.usda.gov/nass

  • van der Heijden OW, Essers YP, Fazzi G et al (2005) Uterine artery remodeling and reproductive performance are impaired in endothelial nitric oxide synthase-deficient mice. Biol Reprod 72:1161–1168

    Article  PubMed  CAS  Google Scholar 

  • Van Winkle LJ, Christensen HN, Campione AL (1985) Na+ dependent transport of basic, zwitterionic, and bicyclic amino acids by a broad-scope system in mouse blastocysts. J Biol Chem 260:12118–12123

    PubMed  Google Scholar 

  • Van Winkle LJ, Campione AL, Gorman JM (1988) Na+ independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. J Biol Chem 263:3150–3163

    PubMed  Google Scholar 

  • Wang JJ, Wu ZL, Li DF et al (2012) Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 17:282–301

    Article  PubMed  CAS  Google Scholar 

  • Wei JW, Carroll RJ, Harden KK et al (2012) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42:2031–2035

    Article  PubMed  CAS  Google Scholar 

  • Wu G (1995) Urea synthesis in enterocytes of developing pigs. Biochem J 312:717–723

    PubMed  CAS  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol Gastrointest Liver Physiol 272:G1382–G1390

    CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2010a) Functional amino acids in growth, reproduction and health. Adv Nutr 1:31–37

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2010b) Recent advances in swine amino acid nutrition. J Anim Sci Biotech 1:49–61

    Google Scholar 

  • Wu G (2013a) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton 503

    Book  Google Scholar 

  • Wu G (2013b) Functional amino acids in nutrition and health. Amino Acids. doi:10.1007/s00726-013-1500-6

    Google Scholar 

  • Wu G, Meininger CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr 22:61–86

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2009) Nitric oxide and vascular insulin resistance. BioFactors 35:21–27

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Tuo W (1995) Developmental changes of free amino acid concentrations in fetal fluids of pigs. J Nutr 125:2859–2868

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Tuo W et al (1996a) Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol Reprod 54:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE et al (1996b) Arginine degradation in developing porcine enterocytes. Am J Physiol Gastrointest Liver Physiol 271:G913–G919

    CAS  Google Scholar 

  • Wu G, Pond WG, Ott TL et al (1998) Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs. J Nutr 128:894–902

    PubMed  CAS  Google Scholar 

  • Wu G, Ott TL, Knabe DA et al (1999) Amino acid composition of the fetal pig. J Nutr 129:1031–1038

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004a) Arginine nutrition in neonatal pigs. J Nutr 134:2390–2783

    Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2004b) Maternal nutrition and fetal development. J Nutr 134:2169S–2172S

    Google Scholar 

  • Wu G, Bazer FW, Wallace JM et al (2006) Intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2007a) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2007b) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Datta S et al (2008) Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35:691–702

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2010) Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci 88:E195–E204

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2011a) Important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2011b) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Imhoff-Kunsch B, Girard AW (2012a) Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr Perinatal Epidemiol 26(Suppl 1):4–26

    Article  Google Scholar 

  • Wu X, Yin YL, Liu YQ et al (2012b) Effect of dietary arginine and N-carbamoylglutamate supplementation on reproduction and gene expression of eNOS, VEGFA and PlGF1 in placenta in late pregnancy of sows. Anim Reprod Sci 132:187–192

    Article  PubMed  CAS  Google Scholar 

  • Wu ZL, Satterfield MC, Bazer FW et al (2012c) Regulation of brown adipose tissue development and white fat reduction by l-arginine. Curr Opin Clin Nutr Metab Care 15:529–538

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Wu ZL, Dai ZL et al (2013) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Xiao XM, Li LP (2005) l-arginine treatment for asymmetric fetal growth restriction. Int J Gynecol Obstet 88:15–18

    Article  CAS  Google Scholar 

  • Zeng XF, Wang FL, Fan X et al (2008) Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr 138:1421–1425

    PubMed  CAS  Google Scholar 

  • Zeng XF, Mao XB, Huang ZM et al (2012) Arginine enhances embryo implantation in rats through PI3 K/Akt/mTOR/NO signaling pathway during early pregnancy. PLoS ONE 7(7):e41192

    Article  PubMed  CAS  Google Scholar 

  • Zeng XF, Mao XB, Huang ZM et al (2013) Arginine enhances embryo implantation in rats through PI3 K/PKB/mTOR/NO signaling pathway during early pregnancy. Reproduction 145:1–7

    Article  PubMed  CAS  Google Scholar 

  • Zhao YC, Chi YJ, Yu YS et al (2008) Polyamines are essential in embryo implantation: expression and function of polyamine-related genes in mouse uterus during peri-implantation period. Endocrinology 149:2325–2332

    Article  PubMed  CAS  Google Scholar 

  • Zhu M, Iyo A, Piletz J et al (2004) Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine. Biochim Biophys Acta 1670:156–164

    Article  PubMed  CAS  Google Scholar 

  • Zier-Rush CE, Kuntzman A, Schmidt T et al (2012) Arginine supplement in early and late pregnant sows did not improve litter size or birth weight. J Anim Sci 90(Suppl 2):34 (abstract)

    Google Scholar 

Download references

Acknowledgments

Work in our laboratories was supported by National Research Initiative Competitive Grants from the Animal Reproduction Program (2008-35203-19120, 2009-35206-05211 and 2011-67015-20028) and Animal Growth & Nutrient Utilization Program (2008-35206-18764) of the USDA National Institute of Food and Agriculture, AHA (10GRNT4480020), Texas A&M AgriLife Research (H-8200), the National Natural Science Foundation of China (u0731001, 30810103902, 31172217, 31272449, and 31272450), China Postdoctoral Science Foundation (2012T50163), Chinese Universities Scientific Funds (2012RC024), and the Thousand-People Talent program at China Agricultural University. Important contributions of our graduate students and colleagues to the recent development of this field of research are gratefully appreciated.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Bazer, F.W., Satterfield, M.C. et al. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45, 241–256 (2013). https://doi.org/10.1007/s00726-013-1515-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1515-z

Keywords

Navigation