Skip to main content

Advertisement

Log in

Decreased glutamate, glutamine and citrulline concentrations in plasma and muscle in endotoxemia cannot be reversed by glutamate or glutamine supplementation: a primary intestinal defect?

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Endotoxemia affects intestinal physiology. A decrease of circulating citrulline concentration is considered as a reflection of the intestinal function. Citrulline can be produced in enterocytes notably from glutamate and glutamine. The aim of this work was to determine if glutamate, glutamine and citrulline concentrations in blood, intestine and muscle are decreased by endotoxemia, and if supplementation with glutamate or glutamine can restore normal concentrations. We induced endotoxemia in rats by an intraperitoneal injection of 0.3 mg kg−1 lipopolysaccharide (LPS). This led to a rapid anorexia, negative nitrogen balance and a transient increase of the circulating level of IL-6 and TNF-α. When compared with the values measured in pair fed (PF) animals, almost all circulating amino acids (AA) including citrulline decreased, suggesting a decrease of intestinal function. However, at D2 after LPS injection, most circulating AA concentrations were closed to the values recorded in the PF group. At that time, among AA, only glutamate, glutamine and citrulline were decreased in gastrocnemius muscle without change in intestinal mucosa. A supplementation with 4% monosodium glutamate (MSG) or an isomolar amount of glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscle. However, MSG supplementation led to an accumulation of glutamate in the intestinal mucosa. In conclusion, endotoxemia rapidly but transiently decreased the circulating concentrations of almost all AA and more durably of glutamate, glutamine and citrulline in muscle. Supplementation with glutamate or glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscles. The implication of a loss of the intestinal capacity for AA absorption and/or metabolism in endotoxemia (as judged from decreased citrulline plasma concentration) for explaining such results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abad B, Mesonero JE, Salvador MT, Garcia-Herrera J, Rodriguez-Yoldi MJ (2001) Effect of lipopolysaccharide on small intestinal l-leucine transport in rabbit. Dig Dis Sci 46(5):1113–1119

    Article  PubMed  CAS  Google Scholar 

  • Austgen TR, Chakrabarti R, Chen MK, Souba WW (1992) Adaptive regulation in skeletal muscle glutamine metabolism in endotoxin-treated rats. J Trauma 32(5):600–606 (discussion 606–607)

    Article  PubMed  CAS  Google Scholar 

  • Bailly-Botuha C, Colomb V, Thioulouse E, Berthe MC, Garcette K, Dubern B, Goulet O, Couderc R, Girardet JP (2009) Plasma citrulline concentration reflects enterocyte mass in children with short bowel syndrome. Pediatr Res 65(5):559–563. doi:10.1203/PDR.0b013e31819986da

    Article  PubMed  Google Scholar 

  • Beyreuther K, Biesalski HK, Fernstrom JD, Grimm P, Hammes WP, Heinemann U, Kempski O, Stehle P, Steinhart H, Walker R (2007) Consensus meeting: monosodium glutamate: an update. Eur J Clin Nutr 61(3):304–313

    Article  PubMed  CAS  Google Scholar 

  • Biolo G, Toigo G, Ciocchi B, Situlin R, Iscra F, Gullo A, Guarnieri G (1997) Metabolic response to injury and sepsis: changes in protein metabolism. Nutrition 13(9 Suppl):52S–57S

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Darcy-Vrillon B, Sener A, Duee PH, Malaisse WJ (1991) Arginine metabolism in rat enterocytes. Biochim Biophys Acta 1092(3):304–310

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Guihot-Joubrel G, Vaugelade P, Le Boucher J, Bernard F, Duee P, Cynober L (1999) Portal hyperglutamatemia after dietary supplementation with monosodium glutamate in pigs. Digestion 60(4):349–357

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Boutry C, Bos C, Tome D (2009) Metabolism and functions of l-glutamate in the epithelial cells of the small and large intestines. American J Clin Nutr 90(3):814S–821S. doi:10.3945/ajcn.2009.27462S

    Article  CAS  Google Scholar 

  • Boutry C, Bos C, Matsumoto H, Even P, Azzout-Marniche D, Tome D, Blachier F (2011) Effects of monosodium glutamate supplementation on glutamine metabolism in adult rats. Frontiers Biosci 3:279–290

    Article  Google Scholar 

  • Brosnan ME, Brosnan JT (2009) Hepatic glutamate metabolism: a tale of 2 hepatocytes. Am J Clin Nutr 90(3):857S–861S

    Article  PubMed  CAS  Google Scholar 

  • Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312(Pt 1):163–167

    PubMed  CAS  Google Scholar 

  • Castell JV, Gomez-Lechon MJ, David M, Andus T, Geiger T, Trullenque R, Fabra R, Heinrich PC (1989) Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett 242(2):237–239

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti R (1998) Transcriptional regulation of the rat glutamine synthetase gene by tumor necrosis factor-alpha. Eur J Biochem/FEBS 254(1):70–74

    Article  CAS  Google Scholar 

  • Chambon-Savanovitch C, Farges MC, Raul F, Blachier F, Davot P, Cynober L, Vasson MP (1999) Can a glutamate-enriched diet counteract glutamine depletion in endotoxemic rats? J Nutr Biochem 10(6):331–337

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Nezu R, Sando K, Haque SM, Iiboshi Y, Masunari A, Yoshida H, Kamata S, Takagi Y, Okada A (1996) Influence of glutamine-supplemented parenteral nutrition on intestinal amino acid metabolism in rats after small bowel resection. Surg Today 26(8):618–623

    Article  PubMed  CAS  Google Scholar 

  • Chevalier L, Bos C, Gryson C, Luengo C, Walrand S, Tome D, Boirie Y, Gaudichon C (2009) High-protein diets differentially modulate protein content and protein synthesis in visceral and peripheral tissues in rats. Nutrition 25(9):932–939. doi:10.1016/j.nut.2009.01.013

    Article  PubMed  CAS  Google Scholar 

  • Crenn P, Coudray-Lucas C, Thuillier F, Cynober L, Messing B (2000) Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology 119(6):1496–1505

    Article  PubMed  CAS  Google Scholar 

  • Crenn P, Vahedi K, Lavergne-Slove A, Cynober L, Matuchansky C, Messing B (2003) Plasma citrulline: a marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 124(5):1210–1219

    Article  PubMed  CAS  Google Scholar 

  • Crenn P, Messing B, Cynober L (2008) Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutrition 27(3):328–339. doi:10.1016/j.clnu.2008.02.005

    Article  CAS  Google Scholar 

  • Crouser ED, Julian MW, Weinstein DM, Fahy RJ, Bauer JA (2000) Endotoxin-induced ileal mucosal injury and nitric oxide dysregulation are temporally dissociated. Am J Respir Crit Care Med 161(5):1705–1712

    PubMed  CAS  Google Scholar 

  • Darcy-Vrillon B, Posho L, Morel MT, Bernard F, Blachier F, Meslin JC, Duee PH (1994) Glucose, galactose, and glutamine metabolism in pig isolated enterocytes during development. Pediatr Res 36(2):175–181

    Article  PubMed  CAS  Google Scholar 

  • Dhanakoti SN, Brosnan JT, Herzberg GR, Brosnan ME (1990) Renal arginine synthesis: studies in vitro and in vivo. Am J Physiol 259(3 Pt 1):E437–E442

    PubMed  CAS  Google Scholar 

  • Dillon EL, Knabe DA, Wu G (1999) Lactate inhibits citrulline and arginine synthesis from proline in pig enterocytes. Am J Physiol 276(5 Pt 1):G1079–G1086

    PubMed  CAS  Google Scholar 

  • Duee PH, Darcy-Vrillon B, Blachier F, Morel MT (1995) Fuel selection in intestinal cells. Proc Nutrition Soc 54(1):83–94

    Article  CAS  Google Scholar 

  • Gardiner K, Barbul A (1993) Intestinal amino acid absorption during sepsis. J Parenter Enter Nutrition 17(3):277–283

    Article  CAS  Google Scholar 

  • Gardiner KR, Ahrendt GM, Gardiner RE, Barbul A (1995a) Failure of intestinal amino acid absorptive mechanisms in sepsis. J Am Coll Surg 181(5):431–436

    PubMed  CAS  Google Scholar 

  • Gardiner KR, Gardiner RE, Barbul A (1995b) Reduced intestinal absorption of arginine during sepsis. Crit Care Med 23(7):1227–1232

    Article  PubMed  CAS  Google Scholar 

  • Geng M, Li T, Kong X, Song X, Chu W, Huang R, Yin Y, Wu G (2011) Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates. Amino Acids 40(5):1513–1522

    Article  PubMed  CAS  Google Scholar 

  • Guihot G, Blachier F, Colomb V, Morel MT, Raynal P, Corriol O, Ricour C, Duee PH (1997) Effect of an elemental vs a complex diet on l-citrulline production from l-arginine in rat isolated enterocytes. J Parenter Enter Nutrition 21(6):316–323

    Article  CAS  Google Scholar 

  • Haynes TE, Li P, Li X, Shimotori K, Sato H, Flynn NE, Wang J, Knabe DA, Wu G (2009) l-Glutamine or L-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37(1):131–142. doi:10.1007/s00726-009-0243-x

    Article  PubMed  CAS  Google Scholar 

  • Hietbrink F, Besselink MG, Renooij W, de Smet MB, Draisma A, van der Hoeven H, Pickkers P (2009) Systemic inflammation increases intestinal permeability during experimental human endotoxemia. Shock 32(4):374–378. doi:10.1097/SHK.0b013e3181a2bcd6

    Article  PubMed  CAS  Google Scholar 

  • Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y (2004) Glutamate signaling in peripheral tissues. Eur J Biochem 271(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Pacitti AJ, Souba WW (1993) Endotoxin increases hepatic glutamine transport activity. J Surg Res 54(5):393–400. doi:10.1006/jsre.1993.1063

    Article  PubMed  CAS  Google Scholar 

  • Jepson MM, Bates PC, Broadbent P, Pell JM, Millward DJ (1988) Relationship between glutamine concentration and protein synthesis in rat skeletal muscle. Am J Physiol 255(2 Pt 1):E166–E172

    PubMed  CAS  Google Scholar 

  • Jianfeng G, Weiming Z, Ning L, Fangnan L, Li T, Nan L, Jieshou L (2005) Serum citrulline is a simple quantitative marker for small intestinal enterocytes mass and absorption function in short bowel patients. J Surg Res 127(2):177–182. doi:10.1016/j.jss.2005.04.004

    Article  PubMed  Google Scholar 

  • Karinch AM, Pan M, Lin CM, Strange R, Souba WW (2001) Glutamine metabolism in sepsis and infection. J Nutr 131:2535S–2538S

    PubMed  CAS  Google Scholar 

  • Kessel A, Toubi E, Pavlotzky E, Mogilner J, Coran AG, Lurie M, Karry R, Sukhotnik I (2008) Treatment with glutamine is associated with down-regulation of Toll-like receptor-4 and myeloid differentiation factor 88 expression and decrease in intestinal mucosal injury caused by lipopolysaccharide endotoxaemia in a rat. Clin Exp Immunol 151(2):341–347. doi:10.1111/j.1365-2249.2007.03571.x

    Article  PubMed  CAS  Google Scholar 

  • King CJ, Tytgat S, Delude RL, Fink MP (1999) Ileal mucosal oxygen consumption is decreased in endotoxemic rats but is restored toward normal by treatment with aminoguanidine. Crit Care Med 27(11):2518–2524

    Article  PubMed  CAS  Google Scholar 

  • Lutgens LC, Deutz NE, Gueulette J, Cleutjens JP, Berger MP, Wouters BG, von Meyenfeldt MF, Lambin P (2003) Citrulline: a physiologic marker enabling quantitation and monitoring of epithelial radiation-induced small bowel damage. Int J Radiat Oncol Biol Phys 57(4):1067–1074

    Article  PubMed  CAS  Google Scholar 

  • Lutgens LC, Deutz N, Granzier-Peeters M, Beets-Tan R, De Ruysscher D, Gueulette J, Cleutjens J, Berger M, Wouters B, von Meyenfeldt M, Lambin P (2004) Plasma citrulline concentration: a surrogate end point for radiation-induced mucosal atrophy of the small bowel: a feasibility study in 23 patients. Intern J Radiat Oncol, Biol, Phys 60(1):275–285. doi:10.1016/j.ijrobp.2004.02.052

    Article  CAS  Google Scholar 

  • MacLennan PA, Brown RA, Rennie MJ (1987) A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Lett 215(1):187–191

    Article  PubMed  CAS  Google Scholar 

  • Meyer H (1957) The ninhydrin reaction and its analytical applications. Biochem J 67(2):333–340

    PubMed  CAS  Google Scholar 

  • Mosoni L, Malmezat T, Valluy MC, Houlier ML, Mirand PP (1996) Muscle and liver protein synthesis adapt efficiently to food deprivation and refeeding in 12-month-old rats. J Nutr 126(2):516–522

    PubMed  CAS  Google Scholar 

  • Moult PR (2009) Neuronal glutamate and GABAA receptor function in health and disease. Biochem Soc Trans 37(Pt 6):1317–1322

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Sharpe LG (1969) Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 166(903):386–388

    Article  PubMed  CAS  Google Scholar 

  • Picot D, Garin L, Trivin F, Kossovsky MP, Darmaun D, Thibault R (2010) Plasma citrulline is a marker of absorptive small bowel length in patients with transient enterostomy and acute intestinal failure. Clin Nutrition 29(2):235–242. doi:10.1016/j.clnu.2009.08.010

    Article  CAS  Google Scholar 

  • Pinkus LM, Windmueller HG (1977) Phosphate-dependent glutaminase of small intestine: localization and role in intestinal glutamine metabolism. Arch Biochem Biophys 182(2):506–517

    Article  PubMed  CAS  Google Scholar 

  • Potten CS, Allen TD (1977) Ultrastructure of cell loss in intestinal mucosa. J Ultrastruct Res 60(2):272–277

    Article  PubMed  CAS  Google Scholar 

  • Reynolds WA, Lemkey-Johnston N, Filer LJ Jr, Pitkin RM (1971) Monosodium glutamate: absence of hypothalamic lesions after ingestion by newborn primates. Science 172(990):1342–1344

    Article  PubMed  CAS  Google Scholar 

  • Rhoads JM, Plunkett E, Galanko J, Lichtman S, Taylor L, Maynor A, Weiner T, Freeman K, Guarisco JL, Wu GY (2005) Serum citrulline levels correlate with enteral tolerance and bowel length in infants with short bowel syndrome. J Pediatr 146(4):542–547

    Article  PubMed  CAS  Google Scholar 

  • Salloum RM, Copeland EM, Souba WW (1991) Brush border transport of glutamine and other substrates during sepsis and endotoxemia. Ann Surg 213(5):401–409 (discussion 409–410)

    Article  PubMed  CAS  Google Scholar 

  • Santarpia L, Catanzano F, Ruoppolo M, Alfonsi L, Vitale DF, Pecce R, Pasanisi F, Contaldo F, Salvatore F (2008) Citrulline blood levels as indicators of residual intestinal absorption in patients with short bowel syndrome. Ann Nutr Metab 53(2):137–142. doi:10.1159/000170888

    Article  PubMed  CAS  Google Scholar 

  • Sukhotnik I, Agam M, Shamir R, Shehadeh N, Lurie M, Coran AG, Shiloni E, Mogilner J (2007) Oral glutamine prevents gut mucosal injury and improves mucosal recovery following lipopolysaccharide endotoxemia in a rat. J Surg Res 143(2):379–384. doi:10.1016/j.jss.2007.02.002

    Article  PubMed  CAS  Google Scholar 

  • Uehara K, Takahashi T, Fujii H, Shimizu H, Omori E, Matsumi M, Yokoyama M, Morita K, Akagi R, Sassa S (2005) The lower intestinal tract-specific induction of heme oxygenase-1 by glutamine protects against endotoxemic intestinal injury. Crit Care Med 33(2):381–390

    Article  PubMed  CAS  Google Scholar 

  • van de Poll MC, Siroen MP, van Leeuwen PA, Soeters PB, Melis GC, Boelens PG, Deutz NE, Dejong CH (2007) Interorgan amino acid exchange in humans: consequences for arginine and citrulline metabolism. Am J Clin Nutr 85(1):167–172

    PubMed  Google Scholar 

  • van der Hulst RR, von Meyenfeldt MF, Deutz NE, Stockbrugger RW, Soeters PB (1996) The effect of glutamine administration on intestinal glutamine content. J Surg Res 61(1):30–34. doi:10.1006/jsre.1996.0076

    Article  PubMed  Google Scholar 

  • van Vliet MJ, Tissing WJ, Rings EH, Koetse HA, Stellaard F, Kamps WA, de Bont ES (2009) Citrulline as a marker for chemotherapy induced mucosal barrier injury in pediatric patients. Pediatr Blood Cancer 53(7):1188–1194. doi:10.1002/pbc.22210

    Article  PubMed  Google Scholar 

  • Vesali RF, Klaude M, Rooyackers O, Wernerman J (2005) Amino acid metabolism in leg muscle after an endotoxin injection in healthy volunteers. Am J Physiol Endocrinol Metab 288(2):E360–E364. doi:10.1152/ajpendo.00248.2004

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi Y, Yamada E, Yoshida T, Takahashi N (1995) Effect of intestinal resection and arginine-free diet on rat physiology. Am J Physiol 269(2 Pt 1):G313–G318

    PubMed  CAS  Google Scholar 

  • Windmueller HG, Spaeth AE (1975) Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch Biochem Biophys 171(2):662–672

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Catherine Luengo and Véronique Mathé for expert technical assistance. We wish to thank Ms. T. Kuwahara for her excellent technical assistance with the amino acid analysis. The project was supported by funds from Ajinomoto Co. (Japan) and by grants from the National Institute for Agronomic Research (INRA, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Blachier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boutry, C., Matsumoto, H., Bos, C. et al. Decreased glutamate, glutamine and citrulline concentrations in plasma and muscle in endotoxemia cannot be reversed by glutamate or glutamine supplementation: a primary intestinal defect?. Amino Acids 43, 1485–1498 (2012). https://doi.org/10.1007/s00726-012-1221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1221-2

Keywords

Navigation