Skip to main content
Log in

Composition of amino acids in feed ingredients for animal diets

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Dietary amino acids (AA) are crucial for animal growth, development, reproduction, lactation, and health. However, there is a scarcity of information regarding complete composition of “nutritionally nonessential AA” (NEAA; those AA which can be synthesized by animals) in diets. To provide a much-needed database, we quantified NEAA (including glutamate, glutamine, aspartate, and asparagine) in feed ingredients for comparison with “nutritionally essential AA” (EAA; those AA whose carbon skeletons cannot be formed by animals). Except for gelatin and feather meal, animal and plant ingredients contained high percentages of glutamate plus glutamine, branched-chain AA, and aspartate plus asparagine, which were 10–32, 15–25, and 8–14% of total protein, respectively. In particular, leucine and glutamine were most abundant in blood meal and casein (13% of total protein), respectively. Notably, gelatin, feather meal, fish meal, meat and bone meal, and poultry byproduct had high percentages of glycine, proline plus hydroxyproline, and arginine, which were 10–35, 9.6–35, and 7.2–7.9% of total protein, respectively. Among plant products, arginine was most abundant in peanut meal and cottonseed meal (14–16% of total protein), whereas corn and sorghum had low percentages of cysteine, lysine, methionine, and tryptophan (0.9–3% of total protein). Overall, feed ingredients of animal origin (except for gelatin) are excellent sources of NEAA and EAA for livestock, avian, and aquatic species, whereas gelatin provides highest amounts of arginine, glycine, and proline plus hydroxyproline. Because casein, corn, soybean, peanut, fish, and gelatin are consumed by children and adults, our findings also have important implications for human nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

Amino acids

BCAA:

Branched-chain amino acids

CP:

Crude protein

CSM:

Cottonseed meal

DM:

Dry matter

EAA:

Essential amino acids

MBM:

Meat and bone meal

NEAA:

Nonessential amino acids

NRC:

National Research Council

PBM:

Poultry byproduct meal

SBM:

Soybean meal

References

  • Austic RE (1976) Nutritional and metabolic interrelationships of arginine, glutamic acid and proline in the chicken. Fed Proc 35:1914–1916

    PubMed  CAS  Google Scholar 

  • Avruch J, Long XM, Ortiz-Vega S et al (2009) Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 296:E592–E602

    Article  PubMed  CAS  Google Scholar 

  • Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37:29–41

    Article  PubMed  CAS  Google Scholar 

  • Ball RO, Atkinson JL, Bayley HS (1986) Proline as an essential amino acid for the young pig. Br J Nutr 55:659–668

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Boutry C, Bos C et al (2009) Metabolism and functions of l-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 90:814S–821S

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Lancha AH Jr, Boutry C et al (2010) Alimentary proteins, amino acids and cholesterolemia. Amino Acids 38:15–22

    Article  PubMed  CAS  Google Scholar 

  • Brasse-Lagnel C, Lavoinne A, Husson A (2009) Control of mammalian gene expression by amino acids, especially glutamine. FEBS J 276:1826–1844

    Article  PubMed  CAS  Google Scholar 

  • Burrin DG, Reeds PJ (1997) Alternative fuels in the gastrointestinal tract. Curr Opin Gastroenterol 13:165–170

    Article  Google Scholar 

  • Chen LX, Li P, Wang JJ et al (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152

    Article  PubMed  CAS  Google Scholar 

  • Curi R, Lagranha CJ, Doi SQ et al (2005) Molecular mechanisms of glutamine action. J Cell Physiol 204:392–401

    Article  PubMed  CAS  Google Scholar 

  • Davis TA, Nguyen HV, Garciaa-Bravo R et al (1994) Amino acid composition of human milk is not unique. J Nutr 124:1126–1132

    PubMed  CAS  Google Scholar 

  • Deng D, Yin YL, Chu WY et al (2009) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 20:544–552

    Article  PubMed  CAS  Google Scholar 

  • Elango R, Ball RO, Pencharz PB (2009) Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino Acids 37:19–27

    Article  PubMed  CAS  Google Scholar 

  • Escobar J, Frank JW, Suryawan A et al (2006) Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs. Am J Physiol Endocrinol Metab 290:E612–E621

    Article  PubMed  CAS  Google Scholar 

  • Flynn NE, Bird JG, Guthrie AS (2009) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids 37:123–129

    Article  PubMed  CAS  Google Scholar 

  • Frank J, Escobar J, Nguyen HV et al (2007) Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of pigets. J Nutr 137:315–319

    PubMed  CAS  Google Scholar 

  • Fu WJ, Haynes TE, Kohli R et al (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    PubMed  CAS  Google Scholar 

  • Fu WJ, Stromberg AJ, Viele K et al (2010) Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology. J Nutr Biochem 21:561–572

    Article  PubMed  CAS  Google Scholar 

  • Han J, Liu YL, Fan W et al (2009) Dietary l-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids 37:643–651

    Article  PubMed  CAS  Google Scholar 

  • Haynes TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  PubMed  CAS  Google Scholar 

  • He QH, Kong XF, Wu GY et al (2009) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids 37:199–208

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Wang L, Ding BY et al (2010) Dietary α-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 39:555–564

    Google Scholar 

  • Ji F, Wu G, Blanton JR Jr et al (2005) Changes in weight and composition in various tissues of pregnant gilts and their nutritional implications. J Anim Sci 83:366–375

    PubMed  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  PubMed  CAS  Google Scholar 

  • Jobgen W, Fu WJ, Gao H et al (2009) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37:187–198

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2009) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids 37:89–95

    Article  PubMed  CAS  Google Scholar 

  • Kirchgessner M, Fickler J, Roth FX (1995) Effect of dietary proline supply on N-balance of piglets. 3. Communication on the importance of nonessential amino acids for protein retention. J Anim Physiol Anim Nutr 73:57–65

    Article  CAS  Google Scholar 

  • Kong XF, Yin YL, He QH et al (2009) Dietary supplementation with Chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino Acids 37:573–582

    Article  PubMed  CAS  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA et al (2010) Parenteral administration of l-arginine prevents fetal growth restriction in undernourished ewes. J Nutr 140:1242–1248

    Article  PubMed  CAS  Google Scholar 

  • Le Floc’h N, Seve B (2007) Biological roles of tryptophan and its metabolism: potential implications for pig feeding. Livest Sci 112:23–32

    Article  Google Scholar 

  • Lenders CM, Liu S, Wilmore DW et al (2009) Evaluation of a novel food composition database that includes glutamine and other amino acids derived from gene sequencing data. Eur J Clin Nutr 63:1433–1439

    Article  PubMed  CAS  Google Scholar 

  • Li P, Yin YL, Li DF et al (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Li P, Kim SW, Li XL et al (2009a) Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs. Amino Acids 37:709–716

    Article  PubMed  Google Scholar 

  • Li XL, Bazer FW, Gao HJ et al (2009b) Amino acids and gaseous signaling. Amino Acids 37:65–78

    Article  PubMed  Google Scholar 

  • Li P, Knabe DA, Kim SW et al (2009c) Lactating porcine mammary tissue catabolizes branched-chain amino acids for glutamine and aspartate synthesis. J Nutr 139:1502–1509

    Article  PubMed  CAS  Google Scholar 

  • Li P, Mai KS, Trushenski J et al (2009d) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids 37:43–53

    Article  PubMed  Google Scholar 

  • Li XL, Bazer FW, Johnson GA et al (2010) Dietary supplementation with 0.8% l-arginine between days 0 and 25 of gestation reduces litter size in gilts. J Nutr 140:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Peng J, Xiong Y et al (2002) Effects of dietary glutamine and glutamate supplementation on small intestinal structure, active absorption and DNA, RNA concentrations in skeletal muscle tissue of weaned piglets during d 28 to 42 of age. Asian Aust J Anim Sci 15:238–242

    CAS  Google Scholar 

  • Ma XY, Lin YC, Jiang ZY et al (2010) Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids 38:95–102

    Article  PubMed  CAS  Google Scholar 

  • Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    PubMed  CAS  Google Scholar 

  • Mateo RD, Wu G, Moon HK et al (2008) Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J Anim Sci 86:827–835

    Article  PubMed  CAS  Google Scholar 

  • Maynard LA, Loosli JK, Hintz HF et al (1979) Animal nutrition, 7th edn. McGraw-Hill, New York, p 602

    Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS et al (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (NRC) (1994) Nutrient requirements of poultry. National Academy Press, Washington, DC

    Google Scholar 

  • National Research Council (NRC) (1998) Nutrient requirements of swine. National Academy Press, Washington, DC

    Google Scholar 

  • Palii SS, Kays CE, Deval C et al (2009) Specificity of amino acid regulated gene expression: analysis of gene subjected to either complete or single amino acid deprivation. Amino Acids 37:79–88

    Article  PubMed  CAS  Google Scholar 

  • Phang JM, Donald SP, Pandhare J et al (2008) The metabolism of proline, as a stress substrate, modulates carcinogenic pathways. Amino Acids 35:681–690

    Article  PubMed  CAS  Google Scholar 

  • Reeds PJ, Burrin DG (2001) Glutamine and the bowel. J Nutr 131:2505S–2508S

    PubMed  CAS  Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Stipanuk MH, Ueki I, Dominy JE et al (2009) Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37:55–63

    Article  PubMed  CAS  Google Scholar 

  • Stoll B, Burrin DG (2006) Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J Anim Sci 84:E60–E72

    PubMed  Google Scholar 

  • Suryawan A, O’Connor PMJ, Bush JA et al (2009) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids 37:97–104

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Li XG, Kong XF et al (2009a) Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 37:323–331

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ et al (2009b) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Yin Y, Kong X et al (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    Article  PubMed  CAS  Google Scholar 

  • Wang JJ, Chen LX, Li P et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    PubMed  CAS  Google Scholar 

  • Wang WW, Qiao SY, Li DF (2009) Amino acids and gut function. Amino Acids 37:105–110

    Article  PubMed  CAS  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol Gastrointest Liver Physiol 272:G1382–G1390

    CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2010) Recent advances in swine amino acid nutrition. J Anim Sci Biotech 1:49–61

    Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrums and milk. J Nutr 124:415–424

    PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2008) Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. Methods Enzymol 440:177–189

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Yan W et al (1995) Glutamine and glucose metabolism in enterocytes of the neonatal pugs. Am J Physiol Regulatory Comp Integr Physiol 268:R334–R342

    CAS  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    PubMed  CAS  Google Scholar 

  • Wu G, Davis PK, Flynn NE et al (1997) Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr 127:2342–2349

    PubMed  CAS  Google Scholar 

  • Wu G, Ott TL, Knabe DA et al (1999) Amino acid composition of the fetal pig. J Nutr 129:1031–1038

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004) Arginine nutrition in neonatal pigs. J Nutr 134:2783S–2390S

    Google Scholar 

  • Wu G, Bazer FW, Wallace JM et al (2006) Intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Datta S et al (2008) Proline metabolism in the conceptus: Implications for fetal growth and development. Amino Acids 35:691–702

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2010a) Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci 88:E195–E204

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2010b) Functional amino acids in swine nutrition and production. In: Doppenberg J (ed) Dynamics in animal nutrition. Wageningen Academic Publishers, The Netherlands, pp 69–98

    Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2010c) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids. doi:10.1007/s00726-010-0715-z

  • Wu X, Ruan Z, Gao YL et al (2010d) Dietary supplementation with l-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino Acids 39:831–839

    Article  PubMed  CAS  Google Scholar 

  • Yao K, Yin YL, Chu WY et al (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    PubMed  CAS  Google Scholar 

  • Yin FG, Liu YL, Yin YL et al (2009) Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids 37:263–270

    Article  PubMed  CAS  Google Scholar 

  • Zeng XF, Wang FL, Fan X et al (2008) Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr 138:1421–1425

    PubMed  CAS  Google Scholar 

  • Zimmerman DR (1975) Glutamic acid and tryptophan additions to a low-protein pig starter. J Anim Sci 40:871–874

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by National Research Initiative Competitive Grants from the Animal Reproduction Program (2008-35203-19120) and Animal Growth & Nutrient Utilization Program (2008-35206-18764) of the USDA National Institute of Food and Agriculture, and Texas AgriLife Research (H-82000). We thank all the personnel in our laboratory for their technical support, Dr. Darrell Knabe for helpful discussion, and Ms. Frances Mutscher for office support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Rezaei, R., Li, P. et al. Composition of amino acids in feed ingredients for animal diets. Amino Acids 40, 1159–1168 (2011). https://doi.org/10.1007/s00726-010-0740-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0740-y

Keywords

Navigation