Skip to main content

Advertisement

Log in

l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This study tested the hypothesis that L-glutamine (Gln) or L-alanyl-L-glutamine (Ala-Gln) prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Enterocytes of neonatal pigs rapidly hydrolyzed Ala-Gln and utilized Gln. To determine whether Gln or Ala-Gln has a cytoprotective effect, IPEC-1 cells were cultured for 24 h in Gln-free Dulbecco’s modified Eagle’s-F12 Ham medium containing 0, 0.5, 2.0 or 5.0 mM Gln or Ala-Gln, and 0, 0.5 mM H2O2 or 30 ng/ml lipopolysaccharide (LPS). Without Gln or Ala-Gln, H2O2- or LPS-treated cells exhibited almost complete death. Gln or Ala-Gln at 0.5, 2 and 5 mM dose-dependently reduced H2O2- or LPS-induced cell death by 14, 54 and 95%, respectively, whereas d-glutamine, alanine, glutamate, ornithine, proline, glucosamine or nucleosides had no effect. To evaluate the effectiveness of Gln or Ala-Gln in vivo, 7-day-old piglets received one-week oral administration of Gln or Ala-Gln (3.42 mmol/kg body weight) twice daily and then a single intraperitoneal injection of LPS (0.1 mg/kg body weight); piglets were euthanized in 24 and 48 h to analyze intestinal apoptotic proteins and morphology. Administration of Gln or Ala-Gln to LPS-challenged piglets increased Gln concentrations in small-intestinal lumen and plasma, reduced intestinal expression of Toll-like receptor-4, active caspase-3 and NFkB, ameliorated intestinal injury, decreased rectal temperature, and enhanced growth performance. These results demonstrate a protective effect of Gln or Ala-Gln against H2O2- or LPS-induced enterocyte death. The findings support addition of Gln or Ala-Gln to current Gln-free pediatric amino acid solutions to prevent intestinal oxidative injury and inflammatory disease in neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Amino acid

Ala:

l-Alanine

Ala-Gln:

l-Alanyl-l-glutamine

DMEM-F12:

Dulbecco’s modified Eagle’s F12 Ham medium

FBS:

Fetal bovine serum

Gln:

l-Glutamine

IPEC-1:

Intestinal porcine epithelial cell line-1

LPS:

Lipopolysaccharide

MyD88:

Myeloid differentiation factor 88

NFkB:

Nuclear factor kappa-light-chain enhancer of activator B cells

TLR4:

Toll-like receptor 4

References

  • Agostoni C, Carratu B, Boniglia C et al (2000) Free glutamine and glutamic acid increase in human milk through a three-month lactation period. J Pediatr Gastroenter Nutr 31:508–512

    Article  CAS  Google Scholar 

  • Becker RM, Wu G, Galanko JA et al (2000) Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr 137:785–793

    Article  PubMed  CAS  Google Scholar 

  • Biener GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758:994–1003

    Article  CAS  Google Scholar 

  • Blachier F, Mariotti F, Huneau JF, Tomé D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33:547–562

    Article  PubMed  CAS  Google Scholar 

  • Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88:249–286

    Article  PubMed  CAS  Google Scholar 

  • Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radical Biol Med 29:323–333

    Article  CAS  Google Scholar 

  • Chang L, Geng B, Yu F et al (2008) Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34:573–585

    Article  PubMed  CAS  Google Scholar 

  • Coeffier M, Claeyssens S, Hecketsweiler B et al (2003) Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa. Am J Physiol Gastrointest Liver Physiol 285:G266–G273

    PubMed  CAS  Google Scholar 

  • Dekaney CM, Wu G, Yin YL, Jaeger LA (2008) Regulation of ornithine aminotransferase gene expression and activity by all-trans retinoic acid in Caco-2 intestinal epithelial cells. J Nutr Biochem 19:674–681

    Article  PubMed  CAS  Google Scholar 

  • Deldicque L, Sanchez Canedo C, Horman S et al (2008) Antagonistic effects of leucine and glutamine on the mTOR pathway in myogenic C2C12 cells. Amino Acids 35:147–155

    Article  PubMed  CAS  Google Scholar 

  • Deng D, Yin YL, Chu WY et al. (2008) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem. doi: 10.1016/j.jnutbio.2008.05.014

  • Engel JM, Ruhs S, Mühling J et al. (2008) Perioperative application of l-alanyl-l-glutamine in cardiac surgery: effect on the polarized T cell cytokine expression. Amino Acids. doi: 10.1007/s00726-008-0114-x

  • Evans ME, Jones DP, Ziegler TR (2003) Glutamine prevents cytokine-induced apoptosis in human colonic epithelial cells. J Nutr 133:3065–3071

    PubMed  CAS  Google Scholar 

  • Flynn NE, Bird JG, Guthrie AS (2008) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids. doi: 10.1007/s00726-008-0206-7

  • Galli F (2007) Amino acid and protein modification by oxygen and nitrogen species. Amino Acids 32:497–499

    Article  CAS  Google Scholar 

  • Garcia RF, Gazola VA, Barrena HC et al (2007) Blood amino acids concentrations during insulin induced hypoglycemia in rats: the role of alanine and glutamine in glucose recovery. Amino Acids 33:151–155

    Article  PubMed  CAS  Google Scholar 

  • Gribar SC, Richardson WM, Sodhi CP, Hackam DJ (2008) No longer an innocent bystander: epithelial Toll-like receptor signaling in the development of mucosal inflammation. Mol Med 14:645–659

    Article  PubMed  CAS  Google Scholar 

  • Han J, Liu YL, Fan W et al. (2008) Dietary l-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids. doi: 10.1007/s00726-008-0184-9

  • Hu CA, Khalil S, Zhaorigetu S et al (2008) Human Δ1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–672

    Article  PubMed  CAS  Google Scholar 

  • Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:C849–C868

    Article  PubMed  CAS  Google Scholar 

  • Katayama M, Matsuda Y, Shimokawa K et al (2001) Simultaneous determination of six adenyl purines in human plasma by high-performance liquid chromatography with fluorescence derivatization. J Chromatogr B 760:159–163

    Article  CAS  Google Scholar 

  • Kessel A, Toubi E, Pavlotzky E et al (2008) Treatment with glutamine is associated with down-regulation of Toll-like receptor-4 and myeloid differentiation factor 88 expression and decrease in intestinal mucosal injury caused by lipopolysaccharide endotoxaemia in a rat. Clin Exp Immunol 151:341–347

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2008) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids. doi: 10.1007/s00726-008-0151-5

  • Lagranha CJ, Doi SQ, Pithon-Curi SQ et al (2008a) Glutamine enhances glucose-induced mesangial cell proliferation. Amino Acids 34:683–685

    Article  PubMed  CAS  Google Scholar 

  • Lagranha CJ, Levada-Pires AC, Sellitti DF et al (2008b) The effect of glutamine supplementation and physical exercise on neutrophil function. Amino Acids 34:337–346

    Article  PubMed  CAS  Google Scholar 

  • Li P, Yin YL, Li D et al (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Li P, Kim SW, Li XL et al. (2008a) Dietary supplementation with cholesterol and docosahexaneoic acid affects concentrations of amino acids in tissues of young pigs. Amino Acids. doi:10.1007/s00726-008-0196-5

  • Li P, Kim SW, Li XL et al (2008b) Dietary supplementation with cholesterol and docosahexaenoic acid increases the activity of the arginine-nitric oxide pathway in tissues of young pigs. Nitric Oxide 19:259–265

    Article  PubMed  CAS  Google Scholar 

  • Liao XH, Majithia A, Huang XL, Kimmel AR (2008) Growth control via TOR kinase signaling, an intracellular sensor of amino acids and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35:761–770

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Mahan DC, Wu G, Kim SW (2008) Protein digestibility of porcine colostrum by neonatal pigs. Livest Sci. doi: 10.1016/j.livsci.2008.06.006

  • Lu S, Yao Y, Meng S, Cheng X, Black DD (2002) Overexpression of apolipoprotein A-IV enhances lipid transport in newborn swine intestinal epithelial cells. J Biol Chem 277:31929–31937

    Article  PubMed  CAS  Google Scholar 

  • Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signaling transduction pathway. Cytokine 42:145–151

    Article  PubMed  CAS  Google Scholar 

  • Madden LA, Sandström ME, Lovell RJ, McNaughton L (2008) Inducible heat shock protein 70 and its role in preconditioning and exercise. Amino Acids 34:511–516

    Article  PubMed  CAS  Google Scholar 

  • Mannick JB (2007) Regulation of apoptosis by protein S-nitrosylation. Amino Acids 32:523–526

    Article  PubMed  CAS  Google Scholar 

  • Mühling J, Burchert D, Langefeld TW et al (2007) Pathways involved in alanyl-glutamine-induced changes in neutrophil amino- and α-keto acid homeostasis or immunocompetence. Amino Acids 33:511–524

    Article  PubMed  CAS  Google Scholar 

  • Muz B, Kontny E, Marcinkiewicz J et al (2008) Heme oxygenase-1 participates in the anti-inflammatory activity of taurine chloramine. Amino Acids 35:397–402

    Article  PubMed  CAS  Google Scholar 

  • Neville MC, Neifert MR (1983) Lactation: physiology, nutrition, and breast-feeding. Plenum Press, New York, pp 61–62

    Google Scholar 

  • Olszanecki R, Kurnyta M, Biedron R et al (2008) The role of heme oxygenase-1 in down regulation of PGE2 production by taurine chloramines and taurine bromamine in J774.2 macrophages. Amino Acids 35:359–364

    Article  PubMed  CAS  Google Scholar 

  • Orellana RA, Suryawan A, Kimball SR et al (2008) Insulin signaling in skeletal muscle and liver of neonatal pigs during endotoxemia. Pediatr Res 64:505–510

    Article  PubMed  CAS  Google Scholar 

  • Ou DY, Li DF, Cao YH et al (2007) Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs. J Nutr Biochem 18:820–826

    Article  PubMed  CAS  Google Scholar 

  • Reeds PJ, Burrin DG (2001) Glutamine and the bowel. J Nutr 131:2505S–2508S

    PubMed  CAS  Google Scholar 

  • Rhoads JM, Wu G (2008) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids. doi: 10.1007/s00726-008-0225-4

  • Rhoads JM, Argenzio RA, Chen W et al (1997) L-glutamine stimulates intestinal cell proliferation and activates mitogen-activated protein kinases. Am J Physiol 272:G943–G953

    PubMed  CAS  Google Scholar 

  • Rider JE, Hacker A, Mackintosh CA et al (2007) Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–240

    Article  PubMed  CAS  Google Scholar 

  • Self JT, Spencer TE, Johnson GA et al (2004) Glutamine synthesis in the developing porcine placenta. Biol Reprod 70:1444–1451

    Article  PubMed  CAS  Google Scholar 

  • Suryawan A, O’Connor PMJ, Bush JA et al. (2008) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids. doi:10.1007/s00726-008-0149-z

  • Trottier NL, Shipley CF, Easter RA (1997) Plasma amino acid uptake by the mammary gland of the lactating sow. J Anim Sci 75:1266–1278

    PubMed  CAS  Google Scholar 

  • Tsao M, Otter DE (1999) Quantification of glutamine in proteins and peptides using enzymatic hydrolysis and reversed-phase high-performance liquid chromatography. Anal Biochem 269:143–148

    Article  PubMed  CAS  Google Scholar 

  • Uehara K, Takahashi T, Fujii H et al (2005) The lower intestinal tract-specific induction of heme oxygenase-1 by glutamine protects against endotoximic intestinal injury. Crit Care Med 33:381–390

    Article  PubMed  CAS  Google Scholar 

  • Umeda K, Takahashi T, Inoue K et al (2009) Prevention of hemorrhagic shock-induced intestinal tissue injury by glutamine via heme oxygenase-1 induction. Shock 31:40–49

    Article  PubMed  CAS  Google Scholar 

  • Voss P, Grune T (2007) The nuclear proteasome and the degradation of oxidatively damaged proteins. Amino Acids 32:527–534

    Article  PubMed  CAS  Google Scholar 

  • Wang JY (2007) Polyamines and mRNA stability in regulation of intestinal mucosal growth. Amino Acids 33:241–252

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Qiao S, Li D (2008a) Amino acids and gut function. Amino Acids. doi: 10.1007/s00726-008-0152-4

  • Wang J, Chen L, Li P et al (2008b) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    PubMed  CAS  Google Scholar 

  • Wang XQ, Ou DY, Yin JD et al. (2009) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids. doi: 10.1007/s00726-009-0242-y

  • Wischmeyer P, Musch MW, Madonna MB et al (1997) Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol 272:G879–G884

    PubMed  CAS  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:415–424

    PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr 22:61–86

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2008) Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. Methods Enzymol 440:177–189

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Yan W, Flynn NE (1995) Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am J Physiol Regul Integr Comp Physiol 268:R334–R342

    CAS  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    PubMed  CAS  Google Scholar 

  • Wu G, Flynn NE, Knabe DA (2000) Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol Endocrinol Metab 279:E395–E402

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Datta S et al (2008a) Proline metabolism in the conceptus: Implications for fetal growth and development. Amino Acids 35:691–702

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al. (2008b) Arginine metabolism and nutrition in growth, health and disease. Amino Acids. doi: 10.1007/s00726-008-0210-y

Download references

Acknowledgments

We thank Scott Jobgen and Elaine Jobgen for technical support, as well as Frances Mutscher for assistance in manuscript preparation. This work was supported by the National Research Initiative Competitive Grant from the USDA Cooperative State Research, Education, and Extension Service (no. 2008-35206-18764), Texas AgriLife Research (H-8200), and National Natural Science Foundation of China (no. 30600434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Additional information

Unless indicated, amino acids used and analyzed in this study are l-isomers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, T.E., Li, P., Li, X. et al. l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37, 131–142 (2009). https://doi.org/10.1007/s00726-009-0243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0243-x

Keywords

Navigation