Skip to main content

Advertisement

Log in

High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Dietary l-arginine (Arg) supplementation reduces white-fat gain in diet-induced obese rats but the underlying mechanisms are unknown. This study tested the hypothesis that Arg treatment affects expression of genes related to lipid metabolism in adipose tissue. Four-week-old male Sprague–Dawley rats were fed a low-fat (LF) or high-fat (HF) diet for 15 weeks. Thereafter, lean or obese rats continued to be fed their same respective diets and received drinking water containing 1.51% Arg–HCl or 2.55% l-alanine (isonitrogenous control). After 12 weeks of Arg supplementation, rats were euthanized to obtain retroperitoneal adipose tissue for analyzing global changes in gene expression by microarray. The results were confirmed by RT-PCR analysis. HF feeding decreased mRNA levels for lipogenic enzymes, AMP-activated protein kinase, glucose transporters, heme oxygenase 3, glutathione synthetase, superoxide dismutase 3, peroxiredoxin 5, glutathione peroxidase 3, and stress-induced protein, while increasing expression of carboxypeptidase-A, peroxisome proliferator activated receptor (PPAR)-α, caspase 2, caveolin 3, and diacylglycerol kinase. In contrast, Arg supplementation reduced mRNA levels for fatty acid binding protein 1, glycogenin, protein phosphates 1B, caspases 1 and 2, and hepatic lipase, but increased expression of PPARγ, heme oxygenase 3, glutathione synthetase, insulin-like growth factor II, sphingosine-1-phosphate receptor, and stress-induced protein. Biochemical analysis revealed oxidative stress in white adipose tissue of HF-fed rats, which was prevented by Arg supplementation. Collectively, these results indicate that HF diet and Arg supplementation differentially regulate gene expression to affect energy-substrate oxidation, redox state, fat accretion, and adipocyte differentiation in adipose tissue. Our findings provide a molecular mechanism to explain a beneficial effect of Arg on ameliorating diet-induced obesity in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AA:

Amino acid

AMPK:

AMP-activated protein kinase

Arg:

l-Arginine

DIO:

Diet-induced obese

HF:

High fat

HO-3:

Heme oxygenase 3

LF:

Low fat

NO:

Nitric oxide

PGC1α:

PPARγ coactivator-1α

PPARγ:

Peroxisome proliferator activator receptor γ

RP:

Retroperitoneal

RT-PCR:

Reverse transcriptase-polymerase chain reaction

SCD1:

Stearoyl-CoA desaturase 1

ZDF:

Zucker diabetic fatty

References

  • Bartesaghi S, Ferrer-Sueta G, Peluffo G et al (2007) Protein tyrosine nitration in hydrophilic and hydrophobic environments. Amino Acids 32:501–515

    Article  PubMed  CAS  Google Scholar 

  • Bassit RA, Curi R, Costa Rosa LFBP (2008) Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids 35:425–431

    Article  PubMed  CAS  Google Scholar 

  • Bray GA, Bellanger T (2006) Epidemiology, trends, and morbidities of obesity and the metabolic syndrome. Endocrine 29:109–117

    Article  PubMed  CAS  Google Scholar 

  • Clark J, Palmer CJ, Shaw WN (1983) The diabetic Zucker fatty rat. Proc Soc Exp Biol Med 173:68–75

    PubMed  CAS  Google Scholar 

  • Dekaney CM, Wu G, Yin YL, Jaeger LA (2008) Regulation of ornithine aminotransferase gene expression and activity by all-trans retinoic acid in Caco-2 intestinal epithelial cells. J Nutr Biochem 19:674–681

    Article  PubMed  CAS  Google Scholar 

  • Flynn NE, Bird JG, Guthrie AS (2008) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids. doi: 10.1007/s00726-008-0206-7

  • Frayn KN, Karpe F, Fielding BA et al (2003) Integrative physiology of human adipose tissue. Int J Obes 27:875–888

    Article  CAS  Google Scholar 

  • Fu WJ, Haynes TE, Kohli R et al (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    PubMed  CAS  Google Scholar 

  • Fu WJ, Hu J, Spencer T et al (2006) Statistical models in assessing fold changes of gene expression in real-time RT-PCR experiments. Comput Biol Chem 30:21–26

    Article  PubMed  CAS  Google Scholar 

  • Gualano B, Novaes RB, Artioli GG et al (2008) Effects of creatine supplementation on glucose tolerance and insulin sensitivity in sedentary healthy males undergoing aerobic training. Amino Acids 34:245–250

    Article  PubMed  CAS  Google Scholar 

  • Guo GB, Xu CS (2008) Expression profiles of the organic acid metabolism-associated gene during rat liver regeneration. Amino Acids 34:597–604

    Article  PubMed  CAS  Google Scholar 

  • Han J, Liu YL, Fan W et al. (2008) Dietary l-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids. doi: 10.1007/s00726-008-0184-9

  • He QH, Kong XF, Wu G et al. (2008) Metabolomic analysis of the response of growing pigs to dietary L-arginine supplementation. Amino Acids. 10.1007/s00726-008-0192-9

  • Higashida M, Xu S, Kojima-Yuasa A et al (2009) 1′-Acetoxychavicol acetate-induced cytotoxicity is accompanied by a rapid and drastic modulation of glutamine metabolism. Amino Acids 36:107–113

    Article  PubMed  CAS  Google Scholar 

  • Hill JO, Peters JC, Catenacci VA, Wyatt HR (2008) International strategies to address obesity. Obesity Rev 9(Suppl 1):41–47

    Article  Google Scholar 

  • Hu CA, Khalil S, Zhaorigetu S et al (2008a) Human ∆1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–672

    Article  PubMed  CAS  Google Scholar 

  • Hu CA, Williams DB, Zhaorigetu S et al (2008b) Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes. Amino Acids 35:655–664

    Article  PubMed  CAS  Google Scholar 

  • Jobgen WS (2007) Dietary l-arginine supplementation reduces fat mass in diet-induced obese rats. Ph.D. Dissertation, Texas A&M University, College Station

  • Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  PubMed  CAS  Google Scholar 

  • Jobgen W, Meininger CJ, Jobgen SC et al (2009) Dietary l-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    PubMed  CAS  Google Scholar 

  • Kersten S (2001) Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2:282–286

    Article  PubMed  CAS  Google Scholar 

  • Kim H (2008) DNA repair Ku proteins in gastric cancer cells and pancreatic acinar cells. Amino Acids 34:195–202

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Sohn I, Ahn JI et al (2004) Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene 340:99–109

    Article  PubMed  CAS  Google Scholar 

  • Kohli R, Meininger CJ, Haynes TE et al (2004) Dietary l-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J Nutr 134:600–608

    PubMed  CAS  Google Scholar 

  • Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27:6194–6206

    Article  PubMed  CAS  Google Scholar 

  • Li S, Zhang HY, Hu CC et al (2008a) Assessment of diet-induced obese rats as an obesity model by comparative functional genomics. Obesity (Silver Spring) 16:811–818

    Article  CAS  Google Scholar 

  • Li M, Kim DH, Tsenovoy PL et al (2008b) Treatment of obese diabetic mice with heme oxgenase induces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes 57:1526–1535

    Article  PubMed  CAS  Google Scholar 

  • Liao XH, Majithia A, Huang XL, Kimmel AR (2008) Growth control via TOR kinase signaling, an intracellular sensor of amino acids and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35:761–770

    Article  PubMed  CAS  Google Scholar 

  • Lupi A, Tenni R, Rossi A et al (2008) Human prolidase and prolidase deficiency. Amino Acids 35:739–752

    Article  PubMed  CAS  Google Scholar 

  • Ma XY, Lin YC, Jiang ZY et al. (2008) Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids. doi: 10.1007/s00726-008-0213-8

  • Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554

    Article  PubMed  CAS  Google Scholar 

  • Manna P, Sinha M, Sil PC (2008) Taurine plays a beneficial role against cadmium-induced oxidative renal dysfunction. Amino Acids. doi: 10.1007/s00726-008-0094-x

  • Marques MPM, Gil FPSC, Calheiros R et al (2008) Biological activity of antitumoural MGBG: the structural variable. Amino Acids 34:555–564

    Article  PubMed  CAS  Google Scholar 

  • Montanez R, Rodriguez-Caso C, Sanchez-Jimenez F, Medina MA (2008) In silico analysis of arginine catabolism as a source of nitric oxide or polyamines in endothelial cells. Amino Acids 34:223–229

    Article  PubMed  CAS  Google Scholar 

  • Muz B, Kontny E, Marcinkiewicz J et al (2008) Heme oxygenase-1 participates in the anti-inflammatory activity of taurine chloramines. Amino Acids 35:397–402

    Article  PubMed  CAS  Google Scholar 

  • Nadler ST, Stoehr JP, Schueler KL et al (2000) The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc Natl Acad Sci USA 97:11371–11376

    Article  PubMed  CAS  Google Scholar 

  • Nisoli E, Clementi E, Paolucci C et al (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    Article  PubMed  CAS  Google Scholar 

  • Olszanecki R, Kurnyta M, Biedron R et al (2008) The role of heme oxygenase-1 in down regulation of PGE2 production by taurine chloramines and taurine bromamine in J774.2 macrophages. Amino Acids 35:359–364

    Article  PubMed  CAS  Google Scholar 

  • Orlando GF, Wolf G, Engelmann M (2008) Role of neuronal nitric oxide synthase in the regulation of the neuroendocrine stress response in rodents: insights from mutant mice. Amino Acids 35:17–27

    Article  PubMed  CAS  Google Scholar 

  • Palii SS, Kays CE, Deval C et al (2008) Specificity of amino acid regulated gene expression: analysis of gene subjected to either complete or single amino acid deprivation. Amino Acids. doi: 10.1007/s00726-008-0199-2

  • Phang JM, Donald SP, Pandhare J, Liu YM (2008) The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 35:681–690

    Article  PubMed  CAS  Google Scholar 

  • Pohl J, Ring A, Ehehalt R et al (2004) New concepts of cellular fatty acid uptake: role of fatty acid transport proteins and of caveolae. Proc Nutr Soc 63:259–262

    Article  PubMed  CAS  Google Scholar 

  • Ruderman N, Prentki M (2004) AMP kinase and malonyl-CoA: target for therapy of the metabolic syndrome. Nat Med 3:340–351

    Article  CAS  Google Scholar 

  • Shi W, Meininger CJ, Haynes TE et al (2004) Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem Biophys 41:415–433

    Article  PubMed  CAS  Google Scholar 

  • Sotgia S, Zinellu A, Pinna GA et al (2008) A new selective pre-column ninhydrin-based derivatization for a RP-HPLC determination of plasma asymmetric dimethyl-l-arginine (ADMA) by fluorescence detection. Amino Acids 34:677–682

    Article  PubMed  CAS  Google Scholar 

  • Suenaga R, Yamane H, Tomonaga S et al (2008) Central l-arginine reduced stress responses are mediated by l-ornithine in neonatal chicks. Amino Acids 35:107–113

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ et al (2008) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids. doi:10.1007/s00726-008-0148-0

  • Trostchansky A, Rubbo H (2007) Lipid nitration and formation of lipid-protein adducts: biological insights. Amino Acids 32:517–522

    Article  PubMed  CAS  Google Scholar 

  • Voss P, Grune T (2007) The nuclear proteasome and the degradation of oxidatively damaged proteins. Amino Acids 32:527–534

    Article  PubMed  CAS  Google Scholar 

  • Wang JT (2007) Polyamines and mRNA stability in regulation of intestinal mucosal growth. Amino Acids 33:241–252

    Article  PubMed  CAS  Google Scholar 

  • Wang WW, Qiao SY, Li DF (2008a) Amino acids and gut function. Amino Acids. doi: 10.1007/s00726-008-0152-4

  • Wang JJ, Wu G, Zhou HJ, Wang FL (2008b) Emerging technologies for amino acid nutrition research in the post-genome era. Amino Acids. doi:10.1007/s00726-008-0193-8

  • Willoughby DS, Stout JR, Wilborn CD (2007) Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids 32:467–477

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2009) Nitric oxide and vascular insulin resistance. BioFactors. dio: 10.1002/BIOF.00004

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Wu G, Fang YZ, Yang S et al (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2007a) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2007b) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S

    PubMed  CAS  Google Scholar 

  • Wu G, Collins JK, Perkins-Veazie P et al (2007c) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Datta S et al (2008a) Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35:691–702

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2008b) Arginine metabolism and nutrition in growth, health and disease. Amino Acids. doi: 10.1007/s00726-008-0210-y

  • Yan H, Aziz E, Shillabeer G et al (2002) Nitric oxide promotes differentiation of rat white preadipocytes in culture. J Lipid Res 43:2123–2129

    Article  PubMed  CAS  Google Scholar 

  • Yoon JC, Chickering TW, Rosen ED et al (2000) Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol 20:5343–5349

    Article  PubMed  CAS  Google Scholar 

  • Zou CH, Shao JH (2008) Role of adipocytokines in obesity-associated insulin resistance. J Nutr Biochem 19:277–286

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Laurie Davidson and Mr. Scott Jobgen for technical assistance. This work was supported by National Research Initiative Competitive Grants from the USDA Cooperative State Research, Education, and Extension Service (2008-35206-18762), American Heart Association-TX (0655109Y and 0755024Y), and Texas AgriLife Research (H-8200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jobgen, W., Fu, W.J., Gao, H. et al. High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37, 187–198 (2009). https://doi.org/10.1007/s00726-009-0246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0246-7

Keywords

Navigation