Skip to main content
Log in

Amino acids and gaseous signaling

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Gases, such as nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and sulfur dioxide (SO2) are known toxic pollutants in the air. However, they are now recognized as important signaling molecules synthesized in animals and humans from arginine, glycine (heme), and cysteine, respectively. At physiological levels, NO, CO, and SO2 activate guanylyl cyclase to generate cGMP which elicits a variety of responses (including relaxation of vascular smooth muscle cells, hemodynamics, neurotransmission, and cell metabolism) via cGMP-dependent protein kinases. H2S is also a crucial regulator of both neurological function and endothelium-dependent relaxation through cGMP-independent mechanisms involving stimulation of membrane KATP channels and intracellular cAMP signaling. Additionally, NO, CO, and H2S confer cytoprotective and immunomodulatory effects. Moreover, NH3 is a major product of amino acid catabolism and profoundly affects the function of neurons and the vasculature through glutamine-dependent inhibition of NO synthesis. Emerging evidence shows that amino acids are not only precursors for these endogenous gases, but are also regulators of their production in a cell-specific manner. Thus, recent advances on gaseous signaling have greatly expanded our basic knowledge of amino acid biochemistry and nutrition. These exciting discoveries will aid in the design of new nutritional and pharmacological means to prevent and treat major health problems related to developmental biology and nutrient metabolism, including intrauterine growth restriction, preterm birth, aging, neurological disorders, cancer, obesity, diabetes, and cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Amino acid

CBS:

Cystathionine β-synthase

CSE:

Cystathionine γ-lyase

EC:

Endothelial cells

GABA:

γ-Aminobutyrate

HO:

Heme oxygenase (HMOX)

LPS:

Lipopolysaccharide

MPST:

β-Mercaptopyruvate sulfurtransferase

NFκB:

Nuclear factor kappa B

NAC:

N-Acetyl-cysteine

NMDA:

N-Methyl-d-aspartate

NO:

Nitric oxide

NOS:

Nitric oxide synthase

VSMC:

Vascular smooth muscle cells

References

  • Abebe W, Mozaffari MS (2003) Taurine depletion alters vascular reactivity in rats. Can J Physiol Pharmacol 81:903–909

    Article  PubMed  CAS  Google Scholar 

  • Aberg AM, Hultin M, Abrahamsson P, Larsson JE (2004) Circulatory effects and kinetics following acute administration of carbon monoxide in a porcine model. Life Sci 75:1029–1039

    Article  PubMed  CAS  Google Scholar 

  • Ahmad AS, Zhuang H, Dore S (2006) Heme oxygenase-1 protects brain from acute excitotoxicity. Neuroscience 141:1703–1708

    Article  PubMed  CAS  Google Scholar 

  • Arnal JF, Munzel T, Venema RC et al (1995) Interactions between l-arginine and l-glutamine change endothelial NO production. J Clin Invest 95:2565–2572

    Article  PubMed  CAS  Google Scholar 

  • Atlante A, Calissano P, Bobba A et al (2001) Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett 497:1–5

    Article  PubMed  CAS  Google Scholar 

  • Barañano DE, Ferris CD, Snyder SH (2001) Atypical neural messengers. Trends Neurosci 24:99–106

    Article  PubMed  Google Scholar 

  • Barkoudah E, Jaggar JH, Leffler CW (2004) The permissive role of endothelial NO in CO-induced cerebrovascular dilation. Am J Physiol Heart Circ Physiol 287:H1459–H1465

    Article  PubMed  CAS  Google Scholar 

  • Barua M, Liu Y, Quinn MR (2001) Taurine chloramine inhibits inducible nitric oxide synthase and TNF-α gene expression in activated alveolar macrophages: decreased NFκB activation and IkB kinase activity. J Immunol 167:2275–2281

    PubMed  CAS  Google Scholar 

  • Blachier F, Mariotti F, Huneau JF, Tomé D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33:547–562

    Article  PubMed  CAS  Google Scholar 

  • Bogdan CT, Rollinghoff M, Diefenbach A (2000) The role of nitric oxide in innate immunity. Immunol Rev 173:17–26

    Article  PubMed  CAS  Google Scholar 

  • Bonthius DJ, Bonthiu NE, Li SL et al (2008) The protective effect of neuronal nitric oxide synthase (nNOS) against alcohol toxicity depends upon the NO-cGMP-PKG pathway and NFκB. Neurotoxicology 29:1080–1091

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Article  PubMed  CAS  Google Scholar 

  • Brusko TM, Wasserfall CH, Agarwal A et al (2005) An integral role for heme oxygenase-1 and carbon monoxide in maintaining peripheral tolerance by CD4(+) CD25(+) regulatory T cells. J Immunol 174:5181–5186

    PubMed  CAS  Google Scholar 

  • Burnett AL, Johns DG, Kriegsfeld LJ et al (1998) Ejaculatory abnormalities in mice with targeted disruption of the gene for heme oxygenase-2. Nat Med 4:84–87

    Article  PubMed  CAS  Google Scholar 

  • Capone G, De Marinis A, Simone S et al (2008) Mapping the human proteome for non-redundant peptide islands. Amino Acids 35:209–216

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Geng B, Yu F et al (2008) Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34:573–585

    Article  PubMed  CAS  Google Scholar 

  • Chao CL, Kuo TL, Lee YT (2000) Effects of methionine-induced hyperhomocysteinemia on endothelium-dependent vasodilation and oxidative status in healthy adults. Circulation 101:485–490

    PubMed  CAS  Google Scholar 

  • Chen J, Tu Y, Connolly EC, Ronnett GV (2005) Heme oxygenase-2 protects against glutathione depletion-induced neuronal apoptosis mediated by bilirubin and cyclic GMP. Curr Neurovasc Res 2:121–131

    Article  PubMed  CAS  Google Scholar 

  • Chung HT, Choi BM, Kwon YG et al (2008) Interactive relationship between nitric oxide (NO) and carbon monoxide (CO): heme oxygenase-1/CO pathway is a key modulator in NO-mediated antiapoptosis and anti-inflammation. Methods Enzymol 441:329–338

    Article  PubMed  CAS  Google Scholar 

  • Closs EI, Scheld JS, Sharafi M, Forstermann U (2000) Substrate supply for nitric oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol Pharmacol 57:68–74

    PubMed  CAS  Google Scholar 

  • Coeffier M, Le Pessot F, Leplingard A et al (2002) Acute enteral glutamine infusion enhances heme oxygenase-1 expression in human duodenal mucosa. J Nutr 132:2570–2573

    PubMed  CAS  Google Scholar 

  • Cruse I, Maines MD (1988) Evidence suggesting that the two forms of heme oxygenase are products of different genes. J Biol Chem 263:3348–3353

    PubMed  CAS  Google Scholar 

  • Cutajar MC, Edwards TM (2007) Evidence for the role of endogenous carbon monoxide in memory processing. J Cogn Neurosci 19:557–562

    Article  PubMed  CAS  Google Scholar 

  • De Palma C, Falcone S, Panzeri C et al (2008) Endothelial nitric oxide synthase overexpression by neuronal cells in neurodegeneration: a link between inflammation and neuroprotection. J Neurochem 106:193–204

    Article  PubMed  CAS  Google Scholar 

  • Deldicque L, Sanchez CC, Horman S et al (2008) Antagonistic effects of leucine and glutamine on the mTOR pathway in myogenic C2C12 cells. Amino Acids 35:147–155

    Article  PubMed  CAS  Google Scholar 

  • Di S, Maxson MM, Franco A, Tasker JG (2009) Glucocorticoids regulate glutamate and GABA synapse-specific retrograde transmission via divergent nongemonic signaling pathways. J Neurosci 29:393–401

    Article  PubMed  CAS  Google Scholar 

  • Dolinay T, Szilasi M, Liu MY, Choi AMK (2004) Inhaled carbon monoxide confers anti-inflammatory effects against ventilator-induced lung injury. Am J Respir Crit Care Med 170:613–620

    Article  PubMed  Google Scholar 

  • Durante W, Johnson FK, Johnson RA (2006) Role of carbon monoxide in cardiovascular function. J Cell Mol Med 10:672–686

    Article  PubMed  CAS  Google Scholar 

  • Erdmann K, Grosser N, Schroder H (2005) L-methionine reduces oxidant stress in endothelial cells: role of heme oxygenase-1, ferritin, and nitric oxide. AAPS J 29:E195–E200

    Article  Google Scholar 

  • Esechie A, Kiss L, Olah G et al (2008) Protective effect of hydrogen sulfide in amurine model of acute lung injury induced by combined burn and smoke inhalation. Clin Sci 115:91–97

    Article  PubMed  CAS  Google Scholar 

  • Faff L, Reichenbach A, Albrecht J (1996) Ammonia-induced taurine release from cultured rabbit Muller cells is an osmoresistant process mediated by intracellular accumulation of cyclic AMP. J Neurosci Res 46:231–238

    Article  PubMed  CAS  Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    Article  PubMed  CAS  Google Scholar 

  • Fiumana E, Parfenova H, Jaggar JH, Leffler CW (2003) Carbon monoxide mediates vasodilator effects of glutamate in isolated pressured cerebral arteries of newborn pigs. Am J Physiol Heart Circ Physiol 284:H1073–H1079

    PubMed  CAS  Google Scholar 

  • Fu WJ, Haynes TE, Kohli R et al (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    PubMed  CAS  Google Scholar 

  • Galli F (2007) Amino acid and protein modification by oxygen and nitrogen species. Amino Acids 32:497–499

    Article  CAS  Google Scholar 

  • Geng B, Cui Y, Zhao J et al (2007) Hydrogen sulfide downregulates the aortic L-arginine/nitric oxide pathway in rats. Am J Physiol Regul Integr Comp Physiol 293:R1608–R1618

    PubMed  CAS  Google Scholar 

  • Griffith OW (1987) Mammalian sulfur amino acid metabolism: an overview. Methods Enzymol 143:366–376

    Article  PubMed  CAS  Google Scholar 

  • Grosser N, Oberle S, Berndt G et al (2004) Antioxidant action of l-alanine: heme oxygenase-1 and ferritin as possible mediators. Biochem Biophys Res Commun 314:351–355

    Article  PubMed  CAS  Google Scholar 

  • Hartsfield CL, Alam J, Cook JL, Choi AMK (1997) Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide. Am J Physiol Lung Cell Mol Physiol 273:L980–L988

    CAS  Google Scholar 

  • Harty RF, Ancha HR, Xia Y et al (2004) GABAergic mechanisms of gastroprotection in the rat: roles of sensory neurons, prostaglandins, and nitric oxide. Digest Dis Sci 49:1875–1881

    Article  PubMed  CAS  Google Scholar 

  • Haynes TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids. doi:10.1007/s00726-009-0243-x

  • He QH, Kong XF, Wu G et al. (2008) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids. doi:10.1007/s00726-008-0192-9

  • Hibbs HB, Taintor RR, Vavrin Z (1987) Macrophage cytotoxicity: role for l-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235:473–476

    Article  PubMed  CAS  Google Scholar 

  • Houdijk APJ, Visser JJ, Rijinsburger ER et al (1998) Dietary glutamine supplementation reduces plasma nitrate levels in rats. Clin Nutr 17:11–14

    Article  PubMed  CAS  Google Scholar 

  • Hu CA, Khalil S, Zhaorigetu S et al (2008) Human Δ1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–672

    Article  PubMed  CAS  Google Scholar 

  • Huang PL, Huang ZH, Mashimo H et al (1995) Hypertension in mice lacking the gene for endothelial nitric-oxide synthase. Nature 377:239–242

    Article  PubMed  CAS  Google Scholar 

  • Hung SY, Liou HC, Kang KH et al (2008) Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol Pharmacol 74:1564–1575

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS et al (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wei LH et al (2001) Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 98:4202–4208

    Article  PubMed  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  PubMed  CAS  Google Scholar 

  • Jobgen W, Meininger CJ, Jobgen SC et al (2009a) Dietary l-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    PubMed  CAS  Google Scholar 

  • Jobgen W, Fu WJ, Gao H et al (2009b) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids. doi:10.1007/s00726-009-0246-7

  • Jurkowska H, Wrobel M (2008) N-acetyl-cysteine as a source of sulfane sulfur in astrocytoma and astrocyte cultures: correlation with cell proliferation. Amino Acids 34:231–237

    Article  PubMed  CAS  Google Scholar 

  • Kamoun P (2004) Endogenous production of hydrogen sulfide in mammals. Amino Acids 26:243–254

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi T, Brusilow SW, Traystman RJ, Koehler RC (2005) Glutamine-dependent inhibition of pial arteriolar dilation to acetylcholine with and without hyperammonemia in the rat. Am J Physiol Regul Integr Comp Physiol 288:R1612–R1619

    PubMed  CAS  Google Scholar 

  • Kim HS, Loughran PA, Billiar TR (2008) Carbon monoxide decreases the level of iNOS protein and active dimmer in IL-1β-stimulated hepatocytes. Nitric Oxide 18:256–265

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Nagai Y, Umemura K, Kimura Y (2005) Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal 7:795–803

    Article  PubMed  CAS  Google Scholar 

  • Kiss L, Deitch EA, Szabo C (2008) Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition. Life Sci 83:589–594

    Article  PubMed  CAS  Google Scholar 

  • Kodavanti UP, Schladweiler MC, Ledbetter AD et al (2006) The spontaneously hypertensive rat: an experimental model of sulfur dioxide-induced airways disease. Toxicol Sci 94:193–205

    Article  PubMed  CAS  Google Scholar 

  • Kohli R, Meininger CJ, Haynes TE et al (2004) Dietary l-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J Nutr 134:600–608

    PubMed  CAS  Google Scholar 

  • Lagranha CJ, Doi SQ, Pithon-Curi SQ et al (2008a) Glutamine enhances glucose-induced mesangial cell proliferation. Amino Acids 34:683–685

    Article  PubMed  CAS  Google Scholar 

  • Lagranha CJ, Levada-Pires AC, Sellitti DF et al (2008b) The effect of glutamine supplementation and physical exercise on neutrophil function. Amino Acids 34:337–346

    Article  PubMed  CAS  Google Scholar 

  • Lee TJF, Sarwinski S, Ishine T et al (1996) Inhibition of cerebral neurogenic vasodilation by l-glutamine and nitric oxide synthase inhibitors and its reversal by l-citrulline. J Pharmacol Exp Ther 276:353–358

    PubMed  CAS  Google Scholar 

  • Lee J, Ryu H, Ferrante RJ et al (2003) Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci USA 100:4843–4848

    Article  PubMed  CAS  Google Scholar 

  • Leffler CW, Balabanova L, Fedinec AL et al (2005) Nitric oxide increases carbon monoxide production by piglet cerebral microvessels. Am J Physiol Heart Circ Physiol 289:H1442–H1447

    Article  PubMed  CAS  Google Scholar 

  • Li J, Meng Z (2009) The role of sulfur dioxide as an endogenous gaseous vasoactive factor in synergy with nitric oxide. Nitric Oxide. doi:10.1016/j.niox.2008.12.003

  • Li P, Yin YL, Li D et al (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Li P, Kim SW, Li XL et al (2008a) Dietary supplementation with cholesterol and docosahexaenoic acid increases the activity of the arginine-nitric oxide pathway in tissues of young pigs. Nitric Oxide 19:259–265

    Article  PubMed  CAS  Google Scholar 

  • Li M, Kim DH, Tsenovoy PL et al (2008b) Treatment of obese diabetic mice with heme oxygenase reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes 57:1526–1535

    Article  PubMed  CAS  Google Scholar 

  • Liao XH, Majithia A, Huang XL, Kimmel AR (2008) Growth control via TOR kinase signaling, an intracellular sensor of amino acids and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35:761–770

    Article  PubMed  CAS  Google Scholar 

  • Lin YF, Raab-Graham K, Jan YN, Jan LY (2004) NO stimulation of ATP-sensitive potassium channels: involvement of Ras/mitogen-activated protein kinase pathway and contribution to neuroprotection. Proc Natl Acad Sci USA 101:7799–7804

    Article  PubMed  CAS  Google Scholar 

  • Ma XY, Lin YC, Jiang ZY et al (2008) Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids. doi:10.1007/s00726-008-0213-8

  • Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554

    Article  PubMed  CAS  Google Scholar 

  • Mannick JB (2007) Regulation of apoptosis by protein S-nitrosylation. Amino Acids 32:523–526

    Article  PubMed  CAS  Google Scholar 

  • Marks JD, Schreiber MD (2008) Inhaled nitric oxide and neuroprotection in preterm infants. Clin Perinatol 35:793–807

    Article  PubMed  Google Scholar 

  • Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    PubMed  CAS  Google Scholar 

  • McCoubrey WK Jr, Huang TJ, Maines MD (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 247:725–732

    Article  PubMed  CAS  Google Scholar 

  • Meininger CJ, Wu G (1997) L-Glutamine inhibits nitric oxide synthesis in bovine venular endothelial cells. J Pharmacol Exp Ther 281:448–453

    PubMed  CAS  Google Scholar 

  • Miller DL, Roth MB (2007) Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci USA 104:20618–20622

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi Y, Chen J, Seshan SV et al (2008) A novel cell-permeable antioxidant pepide decreases renal tubular apoptosis and damage in unilateral ureteral obstruction. Am J Physiol Renal Physiol 295:F1545–F1553

    Article  PubMed  CAS  Google Scholar 

  • Mühling J, Burchert D, Langefeld TW et al (2007) Pathways involved in alanyl-glutamine-induced changes in neutrophil amino- and α-keto acid homeostasis or immunocompetence. Amino Acids 33:511–524

    Article  PubMed  CAS  Google Scholar 

  • Mühling J, Nickolaus KA, Matejec R et al (2008) Which mechanisms are involved in taurine-dependent granulocytic immune response or amino- and α-keto acid homeostasis. Amino Acids 34:257–270

    Article  PubMed  CAS  Google Scholar 

  • Mutus B, Rabini RA, Staffolani R et al (2001) Homocysteine-induced inhibition of nitric oxide production in platelets: a study on healthy and diabetic subjects. Diabetologia 44:979–982

    Article  PubMed  CAS  Google Scholar 

  • Muz B, Kontny E, Marcinkiewicz J et al (2008) Heme oxygenase-1 participates in the anti-inflammatory activity of taurine chloramine. Amino Acids 35:397–402

    Article  PubMed  CAS  Google Scholar 

  • Nakahira K, Kim HP, Geng XH et al (2006) Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 203:2377–2389

    Article  PubMed  CAS  Google Scholar 

  • Nelson RJ, Demas GE, Huang PL et al (1995) Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 378:383–386

    Article  PubMed  CAS  Google Scholar 

  • Ning W, Choi AMK, Li CJ (2005) Carbon monoxide inhibits IL-17-induced IL-6 production through the MAPK pathway in human pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 289:L268–L273

    Article  PubMed  CAS  Google Scholar 

  • Nisoli E, Clementi E, Paolucci C et al (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    Article  PubMed  CAS  Google Scholar 

  • Nobre LS, Seixas JD, Romao CC et al (2007) Antimicrobial action of carbon monoxide-releasing compounds. Antimicrob Agents Chemother 51:4303–4307

    Article  PubMed  CAS  Google Scholar 

  • Olszanecki R, Kurnyta M, Biedron R et al (2008) The role of heme oxygenase-1 in down regulation of PGE2 production by taurine chloramines and taurine bromamine in J774.2 macrophages. Amino Acids 35:359–364

    Article  PubMed  CAS  Google Scholar 

  • Orlando GF, Wolf G, Engelmann M (2008) Role of neuronal nitric oxide synthase in the regulation of the neuroendocrine stress response in rodents: insights from mutant mice. Amino Acids 35:17–27

    Article  PubMed  CAS  Google Scholar 

  • Pantazis NJ, West JR, Dai D (1998) The nitric-oxide-cyclic AMP pathway plays an essential role in both promoting cell survival of cerebellar granule cells in culture and protecting the cells against ethanol neurotoxicity. J Neurochem 70:1826–1838

    Article  PubMed  CAS  Google Scholar 

  • Parfenova H, Neff RA, Alonso JS et al (2001) Cerebral vascular endothelial heme oxygenase: expression, localization, and activation by glutamate. Am J Physiol Cell Physiol 281:C1954–C1963

    PubMed  CAS  Google Scholar 

  • Park T, Rogers QR, Morris JG (1999) High dietary protein and taurine increase cysteine desulfhydration in kittens. J Nutr 129:2225–2230

    PubMed  CAS  Google Scholar 

  • Qu K, Lee SW, Bian JS et al (2007) Hydrogen sulfide: neurochemistry and neurobiology. Neurochem Int 52:155–165

    Article  PubMed  CAS  Google Scholar 

  • Rhoads JM, Wu G (2008) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids. doi:10.1007/s00726-008-0225-4

  • Saransaari P, Oja SS (2008) Nitric oxide is involved in taurine release in the mouse brain stem under normal and ischemic conditions. Amino Acids 34:429–436

    Article  PubMed  CAS  Google Scholar 

  • Shih AY, Erb H, Sun X et al (2006) Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci 26:10514–10523

    Article  PubMed  CAS  Google Scholar 

  • Shimazu T, Ikeuchi H, Sugimoto H et al (2000) Half-life of blood carboxyhemoglobin after short-term and long-term exposure to carbon monoxide. J Trauma 49:126–131

    Article  PubMed  CAS  Google Scholar 

  • Simpson RC, Freedland RA (1976) Factors affecting the rate of gluconeogenesis from l-cysteine in the perfused rat liver. J Nutr 106:1272–1278

    PubMed  CAS  Google Scholar 

  • Song RP, Zhou Z, Kim PKM et al (2004) Carbon monoxide promotes Fas/CD95-induced apoptosis in Jurkat cells. J Biol Chem 279:44327–44334

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH, Dominy JE, Lee JI, Coloso RM (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 136:1652S–1659S

    PubMed  CAS  Google Scholar 

  • Stipanuk MH, Ueki I, Dominy JE et al (2008) Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids. doi:10.1007/s00726-008-0202-y

  • Suryawan A, O’Connor PMJ, Bush JA et al (2008) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids. doi:10.1007/s00726-008-0149-z

  • Tan BE, Yin YL, Liu ZQ et al (2008) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids. doi:10.1007/s00726-008-0148-0

  • Tang GH, Wu LY, Liang WB, Wang R (2005) Direct stimulation of K-ATP channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 68:1757–1764

    PubMed  CAS  Google Scholar 

  • Uehara K, Takahashi T, Fujii H et al (2005) The lower intestinal tract-specific induction of heme oxygenase-1 by glutamine protects against endotoxemic intestinal injury. Crit Care Med 33:381–390

    Article  PubMed  CAS  Google Scholar 

  • Umeda K, Takahashi T, Inoue K et al (2009) Prevention of hemorrhagic shock-induced intestinal tissue injury by glutamine via heme oxygenase-1 induction. Shock 31:40–49

    Article  PubMed  CAS  Google Scholar 

  • Vareille M, Rannou F, Thelier N et al (2008) Heme oxygenase-1 is a critical regulator of nitric oxide production in enterohemorrhagic Escherichia coli-infected human enterocytes. J Immunol 180:5720–5726

    PubMed  CAS  Google Scholar 

  • Voss P, Grune T (2007) The nuclear proteasome and the degradation of oxidatively damaged proteins. Amino Acids 32:527–534

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Qiao S, Li D (2008a) Amino acids and gut function. Amino Acids. doi:10.1007/s00726-008-0152-4

  • Wang JJ, Wu G, Zhou HJ, Wang FL (2008b) Emerging technologies for amino acid nutrition research in the post-genome era. Amino Acids. doi:10.1007/s00726-008-0193-8

  • Wang XQ, Ou DY, Yin JD et al (2009) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids. doi:10.1007/s00726-009-0242-y

  • Wei LH, Wu G, Morris SM Jr, Ignarro LJ (2001) Elevated arginase I expression in rat aortic smooth muscle cells increases cell proliferation. Proc Natl Acad Sci USA 98:9260–9264

    Article  PubMed  CAS  Google Scholar 

  • Welch GN, Upchurch GR, Farivar RS et al (1998) Homocysteine-induced nitric oxide production in vascular smooth muscle cells by NF-kappa B-dependent transcriptional activation of Nos2. Proc Natl Acad Sci USA 110:22–31

    CAS  Google Scholar 

  • Williams SEJ, Wootton P, Mason HS et al (2004) Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306:2093–2097

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Brosnan JT (1992) Macrophages can convert citrulline into arginine. Biochem J 281:45–48

    PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2000) Arginine nutrition and cardiovascular function. J Nutr 130:2626–2629

    PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr 22:61–86

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2009) Nitric oxide and vascular insulin resistance. BioFactors. dio:10.1002/BIOF.00004

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    PubMed  CAS  Google Scholar 

  • Wu G, Flynn NE, Flynn SP et al (1999) Dietary protein or arginine deficiency impairs constitutive and inducible nitric oxide synthesis by young rats. J Nutr 129:1347–1354

    PubMed  CAS  Google Scholar 

  • Wu G, Haynes TE, Li H et al (2001) Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis. Biochem J 353:245–252

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Fang YZ, Yang S et al (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2007a) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Collins JK, Perkins-Veazie P et al (2007b) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Datta S et al (2008a) Proline metabolism in the conceptus: Implications for fetal growth and development. Amino Acids 35:691–702

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2008b) Arginine metabolism and nutrition in growth, health and disease. Amino Acids. doi:10.1007/s00726-008-0210-y

  • Yan GR, He QY (2008) Functional proteomics to identify critical proteins in signal transduction pathways. Amino Acids 35:267–274

    Article  PubMed  CAS  Google Scholar 

  • Yanfei W, Lin S, Junbao D, Chaoshu T (2006) Impact of L-arginine on hydrogen sulfide/cystathionine-γ-lyase pathway in rats with blood flow-induced pulmonary hypertension. Biochem Biophys Res Commun 345:851–857

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Wu L, Jiang B et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322:587–590

    Article  PubMed  CAS  Google Scholar 

  • Yi JH, Hazell AS (2005) N-Acetylcysteine attenuates early induction of heme oxygenase-1 following traumatic brain injury. Brain Res 1033:13–19

    Article  PubMed  CAS  Google Scholar 

  • Zeng XF, Wang FL, Fan X et al (2008) Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr 138:1421–1425

    PubMed  CAS  Google Scholar 

  • Zhang HL, Bhatia M (2008) Hydrogen sulfide: a novel mediator of leukocyte activation. Immunopharmacol Immunotoxicol 30:631–645

    Article  PubMed  CAS  Google Scholar 

  • Zhang XH, Li H, Jin HL et al (2000) Effects of homocysteine on endothelial nitric oxide production. Am J Physiol Renal Physiol 279:F671–F678

    PubMed  CAS  Google Scholar 

  • Zhang F, Siow YL, Karmin O (2004) Hyperhomocysteinemia activates NF-kB and inducible nitric oxide synthase in the kidney. Kidney Int 65:1327–1338

    Article  PubMed  CAS  Google Scholar 

  • Zhang HL, Moochlaha SM, Bhatia M (2008) Endogenous hydrogen sulfide regulates inflammatory response by activating the ERK pathway in polymicrobial sepsis. J Immunol 181:4320–4331

    PubMed  CAS  Google Scholar 

  • Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Ndisang JF, Wang R (2003) Modulation of endogenous production of H2S in rat tissues. Can J Physiol Pharmacol 81:848–853

    Article  PubMed  CAS  Google Scholar 

  • Zhao XM, Chen LN, Aihara K (2008) Protein function prediction with high-throughput data. Amino Acids 35:517–530

    Article  PubMed  CAS  Google Scholar 

  • Zhi L, Ang AD, Zhang HL et al (2007) Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK-NF-kB pathway. J Leuk Biol 81:1322–1332

    Article  CAS  Google Scholar 

  • Zhuo M, Small SA, Kandel ER, Hawkins RD (1993) Nitric oxide and carbon monoxide poduce activity-dependent long-term synaptic enhancement in hippocampus. Science 260:1946–1950

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by grants from National Institutes of Health (1R21 HD049449), National Research Initiative Competitive Grants (2008-35206-18764, 2008-35203-19120 and 2009-35203-05211) from the USDA Cooperative State Research, Education, and Extension Service, American Heart Association (0755024Y), and Texas AgriLife Research (H-8200). We thank Dr. Nick Flynn and Dr. Yanan Tian for helpful comments, as well as Mr. Merrick Gearing and Ms. Frances Mutscher for assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Additional information

Unless otherwise indicated, amino acids mentioned in this paper are l-isomers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Bazer, F.W., Gao, H. et al. Amino acids and gaseous signaling. Amino Acids 37, 65–78 (2009). https://doi.org/10.1007/s00726-009-0264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0264-5

Keywords

Navigation