Skip to main content
Log in

Simultaneous voltammetric determination of E. coli and S. typhimurium based on target recycling amplification using self-assembled hairpin probes on a gold electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on a rapid voltammetric method for simultaneous determination of the pathogens E. coli and Salmonella typhimurium (S. typh.) by detecting the rfbE gene of E. coli O157:H7 and gyrB gene of S. typh., respectively, and by using polymerase-assisted target recycling amplification. The assay was constructed by self-assembly of the respective hairpin probes (labeled with the electrochemical probes Methylene Blue and ferrocene) on the surface of a gold electrode. After hybridization between target DNA and hairpin probes (HPs) has occurred, the primers hybridize with the open-chain HPs and initiate extension reactions in the presence of polymerase and deoxyribonucleoside triphosphates. This results in the release of the redox labels from the electrode surface and the target dissociating from the HPs. The released target will bind to other HPs to activate new cycles, which results in enhanced suppression of current, measured best at −0.27 V and +0.36 V (vs. Ag/AgCl) for parallel detection of E. coli DNA and S. typh. DNA, respectively. The method presented here based on target recycling amplification and its integration into multiplexed electrochemical detection of pathogens was successfully applied to quantitative determination of E. coli O157:H7 and S. typh. in synthetic samples. In our perception, the strategy presented here represents a rapid and universal platform for sensitive and multiplexed quantitation of pathogens and related molecular diagnostic targets of relevance in food safety control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akhtar S, Sarker MR, Hossain A (2014) Microbiological food safety: a dilemma of developing societies. Crit Rev Microbiol 40(4):348–359

    Article  CAS  Google Scholar 

  2. Gao W, Fang RH, Thamphiwatana S, Luk BT, Li J, Angsantikul P, Zhang Q, Hu CM, Zhang L (2015) Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett 15:1403–1409

    Article  CAS  Google Scholar 

  3. Brecher ME, Hay SN (2005) Bacterial contamination of blood components. Clin Microbiol Rev 18:195–204

    Article  Google Scholar 

  4. Seok Y, Byun J, Mun H (2014) Colorimetric detection of PCR products of DNA from pathogenic bacterial targets based on a simultaneously amplified DNAzyme. Microchim Acta 181(15):1965–1971

    Article  CAS  Google Scholar 

  5. Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178:7–28

    Article  CAS  Google Scholar 

  6. Shen Z, Hou N, Jin M, Qiu Z, Wang J, Zhang B, Wang X, Wang J, Zhou D (2014) A novel enzyme-linked immunosorbent assay for detection of Escherichia coli O157:H7 using immunomagnetic and beacon gold nanoparticles. Gut Pathog 6:14

    Article  Google Scholar 

  7. Li D, Feng Y, Zhou L, Ye Z, Wang J, Ying Y, Ruan C, Wang R, Li Y (2011) Label-free capacitive immunosensor based on quartz crystal Au electrode for rapid and sensitive detection of Escherichia coli O157:H7. Anal Chim Acta 687:89–96

    Article  CAS  Google Scholar 

  8. Lei P, Tang H, Ding S, Ding X, Zhu D, Shen B, Cheng Q, Yan Y (2015) Determination of the invA gene of Salmonella using surface plasmon resonance along with streptavidin aptamer amplification. Microchim Acta 182:289–296

    Article  CAS  Google Scholar 

  9. Sun J, Ji J, Sun Y, Abdalhai MH, Zhang Y, Sun X (2015) DNA biosensor-based on fluorescence detection of E. coli O157:H7 by Au@Ag nanorods. Biosens Bioelectron 70:239–245

    Article  CAS  Google Scholar 

  10. Duan Y, Ning Y, Song Y, Deng L (2014) Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform. Microchim Acta 181:647–653

    Article  CAS  Google Scholar 

  11. Liu K, Yan X, Mao B, Wang S, Deng L (2016) Aptamer-based detection of Salmonella enteritidis using double signal amplification by Klenow fragment and dual fluorescence. Microchim Acta 183:643–649

    Article  CAS  Google Scholar 

  12. Guo Y, Wang Y, Liu S, Yu J, Wang H, Wang Y, Huang J (2016) Electrochemical immunosensor assay (EIA) for sensitive detection of E. coli O157:H7 with signal amplification on a SG-PEDOT-AuNPs electrode Interface. Analyst 140:551–559

    Article  Google Scholar 

  13. Pheeney CG, Arnold AR, Grodick MA, Barton JK (2013) Multiplexed electrochemistry of DNA-bound metalloproteins. J Am Chem Soc 135:11869–11878

    Article  CAS  Google Scholar 

  14. Bakthavathsalam P, Rajendran V, Saran S, Chatterjee U, Ali B (2013) Immunomagnetic nanoparticle based quantitative PCR for rapid detection of Salmonella. Microchim Acta 180:1241–1248

    Article  CAS  Google Scholar 

  15. Garrido A, Chapela M, Román B, Fajardo P, Vieites JM, Cabado AG (2013) In-house validation of a multiplex real-time PCR method for simultaneous detection of Salmonella spp., Escherichia coli O157 and Listeria monocytogenes. Int J Food Microbiol 164:92–98

    Article  CAS  Google Scholar 

  16. Fu Z, Zhou X, Xing D (2013) Rapid colorimetric gene-sensing of food pathogenic bacteria using biomodification-free gold nanoparticle. Sens Actuators B Chem 182:633–641

    Article  CAS  Google Scholar 

  17. Duan N, Wu S, Dai S, Miao T, Chen J, Wang Z (2015) Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 182:917–923

    Article  CAS  Google Scholar 

  18. Zhao Y, Ye M, Chao Q, Jia N, Ge Y, Shen H (2009) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J Agric Food Chem 57:517–524

    Article  CAS  Google Scholar 

  19. Morales MD, Serra B, Gúzmán-Vázquez A, Reviejo AJ, Pingarrón JM (2007) An electrochemical method for simultaneous detection and identification of Escherichia coli, Staphylococcus aureus and Salmonella choleraesuis using aglucose oxidase-peroxidase composite biosensor. Analyst 132:572–578

    Article  CAS  Google Scholar 

  20. Eggins BR (2002) Chemical sensors and biosensors. Wiley, West Sussex

    Google Scholar 

  21. Ronkainen NJ, Halsallb HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763

    Article  CAS  Google Scholar 

  22. Li D, Song SP, Fan CH (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–641

    Article  Google Scholar 

  23. Liu L, Xiang G, Jiang D, Du C, Liu C, Huang W, Pu X (2016) Electrochemical gene sensor for Mycoplasma pneumoniae DNA using dual signal amplification via a Pt@Pd nanowire and horse radish peroxidase. Microchim Acta 183:379–387

    Article  Google Scholar 

  24. Wang J, Rivas G, Cai XH (1997) Screen-printed electrochemical hybridization biosensor for the detection of DNA sequences from the Escherichia coli pathogen. Electroanalysis 9:395–398

    Article  CAS  Google Scholar 

  25. Yang Z, Liu Y, Lei C, Sun X, Zhou Y (2016) Ultrasensitive detection and quantification of E. coli O157:H7 using a giant magnetoimpedance sensor in an open-surface microfluidic cavity covered with an antibody-modified gold surface. Microchim Acta 183:1831–1837

    Article  CAS  Google Scholar 

  26. Li F, Yu ZG, Qu HC, Zhang GL, Yan H, Liu X, He X (2015) A highly sensitive and specific electrochemical sensing method for robust detection of Escherichia coli lac z gene sequence. Biosens Bioelectron 68:78–82

    Article  CAS  Google Scholar 

  27. Tang D, Tang J, Li Q, Su B, Chen G (2011) Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of Dnase I. Anal Chem 83:7255–7259

    Article  CAS  Google Scholar 

  28. Zhao YX, Chen F, Li Q, Wang LH, Fan CH (2015) Isothermal amplification of nucleic acids. Chem Rev 115:12491–12545

    Article  CAS  Google Scholar 

  29. Zhou J, Wang QX, Zhang CY (2013) Liposome-quantum dot complexes enable multiplexed detection of attomolar DNAs without target amplification. J Am Chem Soc 135:2056–2059

    Article  CAS  Google Scholar 

  30. Yin BC, Liu YQ, Ye BC (2012) One-step, multiplexed fluorescence detection of micrornas based on duplex-specific nuclease signal amplification. J Am Chem Soc 134:5064–5067

    Article  CAS  Google Scholar 

  31. Xiong EH, Zhang XH, Liu YQ, Zhou JW, Yu P, Li XY, Chen JH (2015) Ultrasensitive electrochemical detection of nucleic acids based on the dual-signaling electrochemical ratiometric method and Exonuclease III-assisted target recycling amplification strategy. Anal Chem 87:7291–7296

    Article  CAS  Google Scholar 

  32. Xu M, He Y, Gao Z, Chen G, Tang D (2015) Isothermal cycling and cascade signal amplification strategy for ultrasensitive colorimetric detection of nucleic acids. Microchim Acta 182:449–454

    Article  CAS  Google Scholar 

  33. Liao WC, Annie Ho JA (2009) Attomole DNA electrochemical sensor for the detection of Escherichia coli O157. Anal Chem 81:2470–2476

    Article  CAS  Google Scholar 

  34. Xia F, Zuo XL, Yang RQ, White RJ, Xiao Y, Kang D, Gong X, Lubin AA, Belisle AV, Yuen JD, Hsu BYB, Plaxco KW (2010) Label-free, dual-analyte electrochemical biosensors: a new class of molecular-electronic logic gates. J Am Chem Soc 132:8557–8559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported Shandong Province Natural Science Funds for Distinguished Young Scholars (JQ201410), NSFC (1471644, 21405060), Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (BS2014SW033), and Shandong Province Natural Science Funds (ZR2015CM027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Ethics declarations

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.21 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wang, Y., Liu, S. et al. Simultaneous voltammetric determination of E. coli and S. typhimurium based on target recycling amplification using self-assembled hairpin probes on a gold electrode. Microchim Acta 184, 745–752 (2017). https://doi.org/10.1007/s00604-016-2017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2017-y

Keywords

Navigation