Skip to main content

Advertisement

Log in

Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Foodborne illnesses caused by pathogenic bacteria represent a widespread and growing problem to public health, and there is an obvious need for rapid detection of food pathogens. Traditional culture-based techniques require tedious sample workup and are time-consuming. It is expected that new and more rapid methods can replace current techniques. To enable large scale screening procedures, new multiplex analytical formats are being developed, and these allow the detection and/or identification of more than one pathogen in a single analytical run, thus cutting assay times and costs. We review here recent advancements in the field of rapid multiplex analytical methods for foodborne pathogenic bacteria. A variety of strategies, such as multiplex polymerase chain reaction assays, microarray- or multichannel-based immunoassays, biosensors, and fingerprint-based approaches (such as mass spectrometry, electronic nose, or vibrational spectroscopic analysis of whole bacterial cells), have been explored. In addition, various technological solutions have been adopted to improve detectability and to eliminate interferences, although in most cases a brief pre-enrichment step is still required. This review also covers the progress, limitations and future challenges of these approaches and emphasizes the advantages of new separative techniques to selectively fractionate bacteria, thus increasing multiplexing capabilities and simplifying sample preparation procedures.

New analytical formats are under development to allow multiplexed detection of foodborne pathogens, thus cutting assay times and costs and enabling large scale screening procedures. A variety of analytical strategies are being explored to reach this goal. This review covers the recent progresses, limitations and future challenges of these approaches

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. European Food Safety Authority, Tracing seeds, in particular fenugreek (Trigonella foenum-graecum) seeds, in relation to the Shiga toxin-producing E. coli (STEC) O104:H4 2011 outbreaks in Germany and France, EFSA-Q-2011-00817

  2. Nugen SR, Baeumner AJ (2008) Trends and opportunities in food pathogen detection. Anal Bioanal Chem 391:451–454

    Article  CAS  Google Scholar 

  3. Pedrero M, Campuzano S, Pingarrón JM (2009) Electroanalytical Sensors and devices for multiplexed detection of foodborne pathogen microorganisms. Sensors 9:5503–5520

    Article  CAS  Google Scholar 

  4. Byrne B, Stack E, Gilmartin N, O’Kennedy R (2009) Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors 9:4407–4445

    Article  CAS  Google Scholar 

  5. Raz SR, Haasnoot W (2011) Multiplex bioanalytical methods for food and environmental monitoring. Trends Anal Chem 30:1526–1537

    Article  CAS  Google Scholar 

  6. Gehring AG, Tu SI (2011) High-throughput biosensors for multiplexed food-borne pathogen detection. Annu Rev Anal Chem 4:151–172

    Article  CAS  Google Scholar 

  7. Stevens KA, Jaykus LA (2004) Bacterial separation and concentration from complex sample matrices: A review. Crit Rev Microbiol 30:7–24

    Article  Google Scholar 

  8. Cenciarini-Borde C, Courtois S, La Scola B (2009) Nucleic acids as viability markers for bacteria detection using molecular tools. Future Microbiol 4:45–64

    Article  CAS  Google Scholar 

  9. Wang L, Mustapha A (2010) EMA-real-time PCR as a reliable method for detection of viable Salmonella in chicken and eggs. J Food Sci 75:134–139

    Article  CAS  Google Scholar 

  10. He Y, Chen CY (2010) Quantitative analysis of viable, stressed and dead cells of Campylobacter jejuni strain 81–176. Food Microbiol 27:439–446

    Article  CAS  Google Scholar 

  11. Espiñeira M, Atanassova M, Vieites JM, Santaclara FJ (2010) Validation of a method for the detection of five species, serogroups, biotypes and virulence factors of Vibrio by multiplex PCR in fish and seafood. Food Microbiol 27:122–131

    Article  CAS  Google Scholar 

  12. Oliwa-Stasiak K, Molnar CI, Arshak K, Bartoszcze M, Adley CC (2010) Development of a PCR assay for identification of the Bacillus cereus group species. J Appl Microbiol 108:266–273

    Article  CAS  Google Scholar 

  13. Kawasaki S, Fratamico PM, Horikoshi N, Okada Y, Takeshita K, Sameshima T, Kawamoto S (2009) Evaluation of a multiplex PCR system for simultaneous detection of Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7 in foods and in food subjected to freezing. Foodborne Pathog Dis 6:81–89

    Article  CAS  Google Scholar 

  14. Yuan Y, Xu W, Zhai Z, Shi H, Luo Y, Chen Z, Huang K (2009) Universal primer-multiplex PCR approach for simultaneous detection of Escherichia coli, Listeria monocytogenes, and Salmonella spp. in food samples. J Food Sci 74:446–452

    Article  CAS  Google Scholar 

  15. Oh MH, Paek SH, Shin GW, Kim HY, Jung GY, Oh S (2009) Simultaneous identification of seven foodborne pathogens and Escherichia coli (pathogenic and nonpathogenic) using capillary electrophoresis-based single-strand conformation polymorphism coupled with multiplex PCR. J Food Prot 72:1262–1266

    CAS  Google Scholar 

  16. Li Y, Li Y, Zheng B, Qu L, Li C (2009) Determination of foodborne pathogenic bacteria by multiplex PCR-microchip capillary electrophoresis with genetic algorithm-support vector regression optimization. Anal Chim Acta 643:100–107

    Article  CAS  Google Scholar 

  17. Chakravorty S, Helb D, Burday M, Connell N, Alland D (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69:330–339

    Article  CAS  Google Scholar 

  18. Gilbert C, Winters D, O’Leary A, Slavik M (2003) Development of a triplex PCR assay for the specific detection of Campylobacter jejuni, Salmonella spp., and Escherichia coli O157:H7. Mol Cell Probes 17:135–138

    Article  CAS  Google Scholar 

  19. Kim JS, Lee GG, Park JS, Jung YH, Kwak HS, Kim SB, Nam YS, Kwon ST (2007) A novel multiplex PCR assay for rapid and simultaneous detection of five pathogenic bacteria: Escherichia coli O157:H7, Salmonella, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus. J Food Prot 70:1656–1662

    CAS  Google Scholar 

  20. Lei I, Roffey P, Blanchard C, Gu K (2008) Development of a multiplex PCR method for the detection of six common foodborne pathogens. J Food Drug Anal 16:37–43

    CAS  Google Scholar 

  21. Zhang C, Wang H, Xing D (2011) Multichannel oscillatory-flow multiplex PCR microfluidics for high-throughput and fast detection of foodborne bacterial pathogens. Biomed Microdevices 13:885–897

    Article  Google Scholar 

  22. Wang H, Zhang C, Xing D (2011) Simultaneous detection of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes using oscillatory-flow multiplex PCR. Microchim Acta 173:503–512

    Article  CAS  Google Scholar 

  23. Kawasaki S, Fratamico PM, Horikoshi N, Okada Y, Takeshita K, Sameshima T, Kawamoto S (2010) Multiplex real-time polymerase chain reaction assay for simultaneous detection and quantification of Salmonella species, Listeria monocytogenes, and Escherichia coli O157:H7 in ground pork samples. Foodborne Pathog Dis 7:549–554

    Article  CAS  Google Scholar 

  24. Suo B, He Y, Tu SI, Shi X (2010) A multiplex real-time polymerase chain reaction for simultaneous detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes in meat products. Foodborne Pathog Dis 76:619–628

    Article  Google Scholar 

  25. Amoako KK, Goji N, Macmillan T, Said KB, Druhan S, Tanaka E, Thomas EG (2010) Development of multitarget real-time PCR for the rapid, specific, and sensitive detection of Yersinia pestis in milk and ground beef. J Food Prot 73:18–25

    CAS  Google Scholar 

  26. He YP, Yao XM, Gunther NW, Xie YP, Tu SI, Shi XM (2010) Simultaneous detection and differentiation of Campylobacter jejuni, C. coli, and C. lari in chickens using a multiplex real-time PCR assay. Food Anal Methods 4:321–329

    Article  Google Scholar 

  27. McCarthy N, Reen FJ, Buckley JF, Frye JG, Boyd EF, Gilroy D (2009) Sensitive and rapid molecular detection assays for Salmonella enterica serovars Typhimurium and Heidelberg. J Food Prot 72:2350–2357

    CAS  Google Scholar 

  28. Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D (2011) Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol 28:848–861

    Article  CAS  Google Scholar 

  29. Cheng JC, Huang CL, Lin CC, Chen CC, Chang YC, Chang SS et al (2006) Rapid detection and identification of clinically important bacteria by high-resolution melting analysis after broad-range ribosomal RNA real-time PCR. Clin Chem 52:1997–2004

    Article  CAS  Google Scholar 

  30. Huang Q, Hu Q, Li Q (2007) Identification of 8 foodborne pathogens by multicolor combinational probe coding technology in a single real-time PCR. Clin Chem 53:1741–1748

    Article  CAS  Google Scholar 

  31. Suo B, He Y, Paoli G, Gehring A, Tu SI, Shi X (2010) Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens. Mol Cell Probes 24:77–86

    Article  CAS  Google Scholar 

  32. Hu Y, Liu J, Xia D, Chen S (2011) Simultaneous analysis of foodborne pathogenic bacteria by an oligonucleotide microarray assay. J Basic Microbiol 52:27–34

    Google Scholar 

  33. Fang H, Xu J, Ding D, Jackson SA, Patel IR, Frye JG, Zou W, Nayak R, Foley S, Chen J, Su Z, Ye Y, Turner S, Harris S, Zhou G, Cerniglia C, Tong W (2011) An FDA bioinformatics tool for microbial genomics research on molecular characterization of bacterial foodborne pathogens using microarrays. BMC Bioinform 11(Suppl 6):S4

    Article  Google Scholar 

  34. Zou W, Al-Khaldi SF, Branham WS, Han T, Fuscoe JC, Han J, Foley SL, Xu J, Fang H, Cerniglia CE, Nayak R (2011) Microarray analysis of virulence gene profiles in Salmonella serovars from food/food animal environment. J Infect Dev Ctries 5:94–105

    CAS  Google Scholar 

  35. Zeng X, Shen Z, Mernaugh R (2011) Recombinant antibodies and their use in biosensors. Anal Bioanal Chem 402:3027–3038

    Google Scholar 

  36. Hamula CLA, Zhang H, Li F, Wang Z, Le XC, Li XF (2011) Selection and analytical applications of aptamers binding microbial pathogens. Trends Anal Chem 30:1587–1597

    Article  CAS  Google Scholar 

  37. Zhao Y, Ye M, Chao Q, Jia N, Ge Y, Shen H (2009) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J Agric Food Chem 57:517–524

    Article  CAS  Google Scholar 

  38. Wang H, Li Y, Wang A, Slavik M (2011) Rapid, sensitive, and simultaneous detection of three foodborne pathogens using magnetic nanobead-based immunoseparation and quantum dot-based multiplex immunoassay. J Food Prot 74:2039–2047

    Article  Google Scholar 

  39. Dudak FC, Boyaci IH (2009) Multiplex detection of Escherichia coli and Salmonella enteritidis by using quantum dot-labeled antibodies. J Rapid Meth Automat Microbiol 17:315–327

    Article  CAS  Google Scholar 

  40. Miao T, Wang Z, Li S, Wang X (2011) Sensitive fluorescent detection of Staphylococcus aureus using nanogold linked CdTe nanocrystals as signal amplification labels. Microchim Acta 172:431–437

    Article  CAS  Google Scholar 

  41. Wang L, Zhao W, O’Donoghue MB, Tan W (2007) Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjug Chem 18:297–301

    Article  CAS  Google Scholar 

  42. Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, Lelli R, Roda A (2007) A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. J Agric Food Chem 55:4933–4939

    Article  CAS  Google Scholar 

  43. Roda A, Mirasoli M, Venturoli S, Cricca M, Bonvicini F, Baraldini M, Pasini P, Zerbini M, Musiani M (2002) Microtiter format for simultaneous multianalyte detection and development of a PCR chemiluminescent enzyme immunoassay for typing human papillomavirus DNAs. Clin Chem 48:1654–1660

    CAS  Google Scholar 

  44. Gehring AG, Albin DM, Reed SA, Tu S, Brewster JD (2008) An antibody microarray, in multiwell plate format, for multiplex screening of foodborne pathogenic bacteria and biomolecules. Anal Bioanal Chem 391:497–506

    Article  CAS  Google Scholar 

  45. Leach KM, Stroot JM, Lim DV (2010) Same-day detection of Escherichia coli O157:H7 from spinach by using electrochemiluminescent and cytometric bead array biosensors. Appl Environ Microbiol 76:8044–8052

    Article  CAS  Google Scholar 

  46. Wolter A, Niessner R, Seidel M (2008) Detection of Escherichia coli O157:H7, Salmonella typhimurium, and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. Anal Chem 80:5854–5863

    Article  CAS  Google Scholar 

  47. Karsunke XYZ, Niessner R, Seidel M (2009) Development of a multichannel flow-through chemiluminescence microarray chip for parallel calibration and detection of pathogenic bacteria. Anal Bioanal Chem 395:1623–1630

    Article  CAS  Google Scholar 

  48. Roda A, Mirasoli M, Dolci LS, Buragina A, Bonvicini F, Simoni P, Guardigli M (2011) Portable device based on chemiluminescence lensless imaging for personalized diagnostics through multiplex bioanalysis. Anal Chem 83:3178–3185

    Article  CAS  Google Scholar 

  49. Park J, Park S, Kim Y-K (2010) Multiplex detection of pathogens using an immunochromatographic assay strip. Biochip J 4:305–312

    Article  CAS  Google Scholar 

  50. Karoonuthaisiri N, Charlermroj R, Uawisetwathana U, Luxananil P, Kirtikara K, Gajanandana O (2009) Development of antibody array for simultaneous detection of foodborne pathogens. Biosens Bioelectron 24:1641–1648

    Article  CAS  Google Scholar 

  51. Arora K, Chand S, Malhotra BD (2006) Recent developments in bio-molecular electronics techniques for food pathogens. Anal Chim Acta 568:259–274

    Article  CAS  Google Scholar 

  52. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254

    Article  CAS  Google Scholar 

  53. Lazcka O, Del Campo FJ, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217

    Article  CAS  Google Scholar 

  54. Nayak M, Kotian A, Marathe S, Chakravortty D (2009) Detection of microorganisms using biosensors-a smarter way towards detection techniques. Biosens Bioelectron 25:661–667

    Article  CAS  Google Scholar 

  55. Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M (2007) Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens Bioelectron 22:1544–1549

    Article  CAS  Google Scholar 

  56. Taylor AD, Ladd J, Yu QM, Chen SF, Homola J, Jiang SY (2006) Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron 22:752–758

    Article  CAS  Google Scholar 

  57. Zordan MD, Grafton MM, Acharya G, Reece LM, Cooper CL, Aronson AI, Park K, Leary JF (2009) Detection of pathogenic E. coli O157:H7 by a hybrid microfluidic SPR and molecular imaging cytometry device. Cytometry Part A 75:155–162

    Article  Google Scholar 

  58. Kang T, Yoo SM, Yoon I, Lee SY, Kim B (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10:1189–1193

    Article  CAS  Google Scholar 

  59. Zelada-Guillén GA, Bhosale SV, Riu J, Rius FX (2010) Real-time potentiometric detection of bacteria in complex samples. Anal Chem 82:9254–9260

    Article  CAS  Google Scholar 

  60. Bai S, Zhao J, Zhang Y, Huang W, Xu S, Chen H, Fan LM, Chen Y, Deng XW (2010) Rapid and reliable detection of 11 food-borne pathogens using thin-film biosensor chips. Appl Microbiol Biotechnol 86:983–990

    Article  CAS  Google Scholar 

  61. Elsholz B, Nitsche A, Achenbach J, Ellerbrok H, Blohm L, Albers J, Pauli G, Hintsche R, Wörl R (2009) Electrical microarrays for highly sensitive detection of multiplex PCR products from biological agents. Biosens Bioelectron 24:1737–1743

    Article  CAS  Google Scholar 

  62. Pöhlman C, Wang Y, Humenik M, Heidenreich B, Gareis M, Sprinzl M (2009) Rapid, specific and sensitive electrochemical detection of foodborne bacteria. Biosens Bioelectron 24:2766–2771

    Article  CAS  Google Scholar 

  63. Hee PC, Pyo KJ, Wook LS, Li JN, Pil JY, Jun SS (2009) A direct, multiplex biosensor platform for pathogen detection based on cross-linked polydiacetylene (PDA) supramolecules. Adv Funct Mater 19:3703–3710

    Article  CAS  Google Scholar 

  64. Jin S-Q, Yin B-C, Ye B-C (2009) Multiplexed bead-based mesofluidic system for detection of food-borne pathogenic bacteria. Appl Environ Microbiol 75:6647–6654

    Article  CAS  Google Scholar 

  65. Goh YY, Ho B, Ding JL (2002) A novel fluorescent protein-based biosensor for gram-negative bacteria. Appl Environ Microbiol 68(12):6343–6352

    Article  CAS  Google Scholar 

  66. Ye J, Liu Y, Li Y (2002) A chemiluminescence fiber-optic biosensor coupled with immunomagnetic separation for rapid detection of E. coli O15: H7. Trans ASAE 45:473–478

    Google Scholar 

  67. Ligler FS, Sapsford KE, Golden JP, Shriver-Lake LC, Taitt CR, Dyer MA, Barone S, Myatt CJ (2007) The array biosensor: portable, automated systems. Anal Sci 23:5–10

    Article  Google Scholar 

  68. Massad-Ivanir N, Shtenberg G, Tzur A, Krepker M, Segal E (2001) Engineering nanostructured porous SiO2 surfaces for bacteria detection via direct-cell-capture. Anal Chem 83:3282–3289

    Google Scholar 

  69. Massad-Ivanir N, Shtenberg G, Segal E (2012) Advancing nanostructured porous si-based optical transducers for label free bacteria detection. Adv Exp Med Biol 733:37–45

    Article  Google Scholar 

  70. Janshoff A, Galla HJ, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors-an alternative to optical biosensors? Angew Chem Int Ed 39:4004–4032

    CAS  Google Scholar 

  71. Serra B, Gamella M, Reviejo AJ, Pingarrón JM (2008) Lectin-modified piezoelectric biosensors for bacteria recognition and quantification. Anal Bioanal Chem 391:1853–1860

    Article  CAS  Google Scholar 

  72. Yang H, Li HP, Jiang XP (2008) Detection of foodborne pathogens using bioconjugated nanomaterials. Microfluidic Nanofluidic 5:571–583

    CAS  Google Scholar 

  73. Sanvicens N, Pastells C, Pascual N, Marco MP (2009) Nanoparticle-based biosensors for detection of pathogenic bacteria. Trends Anal Chem 28:1243–1252

    Article  CAS  Google Scholar 

  74. Vinayaka AC, Thakur MS (2010) Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens. Anal Bioanal Chem 397:1445–1455

    Article  CAS  Google Scholar 

  75. Miranda OR, Li XN, Garcia-Gonzalez L, Zhu ZJ, Yan B, Bunz UHF, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. JACS 133:9650–9653

    Article  CAS  Google Scholar 

  76. Valdés MG, Valdés Gonzáles AC, García Calzón JA, Díaz-García ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166:1–19

    Article  CAS  Google Scholar 

  77. Chang HC (2007) Nanobead electrokinetics: the enabling microfluidic platform for rapid multi-target pathogen detection. AIChe J 53:2486–2492

    Article  CAS  Google Scholar 

  78. Siangproh W, Dungchai W, Rattanarat P, Chailapakul O (2011) Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: a review. Anal Chim Acta 690:10–25

    Article  CAS  Google Scholar 

  79. Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing-A review. Anal Chim Acta 706:8–24

    Article  CAS  Google Scholar 

  80. Chen SH, Wu VCH, Chuang YC, Lin CS (2008) Using oligonucleotide-functionalized Au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. J Microbiol Methods 73:7–17

    Article  CAS  Google Scholar 

  81. Wang Y, Irudayaraj J (2010) Multifunctional magnetic–optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 6:283–289

    Article  CAS  Google Scholar 

  82. Wang Y, Ravindranath SP, Irudayaraj J (2011) Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal Bioanal Chem 399:1271–1278

    Article  CAS  Google Scholar 

  83. Ravindranath SP, Wang Y, Irudayaraj J (2011) SERS driven cross-platform based multiplex pathogen detection. Sens Actuat B-Chem 152:183–190

    Article  CAS  Google Scholar 

  84. Jung JH, Kim G-Y, Seo TS (2011) An integrated passive micromixer–magnetic separation–capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level. Lab Chip 11:3465–3470

    Article  CAS  Google Scholar 

  85. Demirev PA, Fenselau C (2008) Mass spectrometry for rapid characterization of microorganisms. Annu Rev Anal Chem 1:71–93

    Article  CAS  Google Scholar 

  86. Wensing A, Gernold M, Geider K (2011) Detection of Erwinia species from the apple and pear flora by mass spectroscopy of whole cells and with novel PCR primers. J Appl Microbiol 112:147–158

    Article  CAS  Google Scholar 

  87. Sospedra I, Soler C, Mañes J, Soriano JM (2011) Analysis of staphylococcal Enterotoxin A in milk by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Anal Bioanal Chem 400:1525–1531

    Article  CAS  Google Scholar 

  88. Böhme K, Fernández-No IC, Barros-Velázquez J, Gallardo JM, Cañas B, Calo-Mata P (2011) Rapid species identification of seafood spoilage and pathogenic Gram-positive bacteria by MALDI-TOF mass fingerprinting. Electrophoresis 32:2951–2965

    Article  CAS  Google Scholar 

  89. Dieckmann R, Helmuth R, Erhard M, Malorny B (2008) Rapid classification and identification of Salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry. Appl Environ Microbiol 74:7767–7778

    Article  CAS  Google Scholar 

  90. Mazzeo MF, Sorrentino A, Gaita M, Cacace G, Di Stasio M, Facchiano A, Comi G, Malorni A, Siciliano RA (2006) Matrix-assisted laser desorption ionization–time of flight mass spectrometry for the discrimination of food-borne microorganisms. Appl Environ Microbiol 72:1180–1189

    Article  CAS  Google Scholar 

  91. Mandrel RE, Wachtelt MR (1999) Novel detection techniques for human contaminate poultry. Curr Opin Biotechnol 10:273–278

    Article  Google Scholar 

  92. Ochoa ML, Harrington PB (2005) Immunomagnetic isolation of enterohemorrhagic Escherichia coli O157:H7 from ground beef and identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and database searches. Anal Chem 77:5258–5267

    Article  CAS  Google Scholar 

  93. Sedo O, Sedlacek I, Zdrahal Z (2011) Sample preparation methods for MALDI-MS profiling of bacteria. Mass Spectrom Rev 30:417–434

    Article  CAS  Google Scholar 

  94. Madonna AJ, Basile F, Furlong E, Voorhees KJ (2001) Detection of bacteria from biological mixtures using immunomagnetic separation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15:1068–1074

    Article  CAS  Google Scholar 

  95. Reschiglian P, Zattoni A, Cinque L, Roda B (2004) Hollow-fiber flow field-flow fractionation for whole bacteria analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 76:2103–2111

    Article  CAS  Google Scholar 

  96. Parisi D, Magliulo M, Nanni P, Casale M, Forina M, Roda A (2008) Analysis and classification of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and a chemometric approach. Anal Bioanal Chem 391:2127–2134

    Article  CAS  Google Scholar 

  97. Casalinuovo IA, Di Pierro D, Coletta M, Di Francesco P (2006) Application of electronic noses for disease diagnosis and food spoilage detection. Sensors 6:1428–1439

    Article  Google Scholar 

  98. Wilson AD, Baietto M (2011) Advances in electronic-nose technologies developed for biomedical applications. Sensors 11:1105–1176

    Article  CAS  Google Scholar 

  99. Green GC, Chan AD, Goubran RA (2006) An investigation into the suitability of using three electronic nose instruments for the detection and discrimination of bacteria types. Conf Proc IEEE Eng Med Biol Soc 1:1850–1853

    Google Scholar 

  100. Green GC, Chan AD, Hanhong D, Min L (2011) Using a metal oxide sensor (MOS)-based electronic nose for discrimination of bacteria based on individual colonies in suspension. Sens Actuat B-Chem 152:21–28

    Google Scholar 

  101. McEntegart CM, Penrose WR, Strathmann S, Stetter JR (2000) Detection and discrimination of coliform bacteria with gas sensor arrays. Sens Actuat B-Chem 70:170–176

    Article  Google Scholar 

  102. Walter A, März A, Schumacher W, Rösch P, Popp J (2011) Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip 11:1013–1021

    Article  CAS  Google Scholar 

  103. Davis R, Mauer LJ (2011) Subtyping of Listeria monocytogenes at the haplotype level by Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis. Int J Food Microbiol 150:140–149

    Article  Google Scholar 

  104. Davis R, Burgula Y, Deering A, Irudayaraj J, Reuhs BL, Mauer LJ (2010) Detection and differentiation of live and heat-treated Salmonella enterica serovars inoculated onto chicken breast using Fourier transform infrared (FT-IR) spectroscopy. J Appl Microbiol 109:2019–2031

    Article  CAS  Google Scholar 

  105. Nicolaou N, Xu Y, Goodacre R (2011) Fourier transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in milk. Anal Chem 83:5681–5687

    Article  CAS  Google Scholar 

  106. Cheng S, Wang Z, Ge S, Wang H, He P, Fang Y, Wang Q (2012) Rapid separation of four probiotic bacteria in mixed samples using microchip electrophoresis with laser-induced fluorescence detection. Microchim Acta 176:295–301

    Article  CAS  Google Scholar 

  107. Szumski M, Kłodzińska E, Buszewski B (2009) Application of a fluorescence stereomicroscope as an in-line detection unit for electrophoretic separation of bacteria. Microchim Acta 164:287–291

    Article  CAS  Google Scholar 

  108. Buszewski B, Szumski M, Kłodzinska E, Dahm H (2003) Separation of bacteria by capillary electrophoresis. J Sep Sci 26:1045–1049

    Article  CAS  Google Scholar 

  109. Armstrong DW, Schulte G, Schneiderheinze JM, Westenberg DJ (1999) Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches. Anal Chem 71:5465–5469

    Article  CAS  Google Scholar 

  110. Armstrong DW, Schneiderheinze JM (2000) Rapid identification of the bacterial pathogens responsible for urinary tract infections using direct injection CE. Anal Chem 72:4474–4476

    Article  CAS  Google Scholar 

  111. Gagnon ZR (2011) Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis 32:2466–2487

    Article  CAS  Google Scholar 

  112. Karo O, Wahl A, Nicol SB, Brachert J, Lambrecht B, Spengler HP, Nauwelaers F, Schmidt M, Schneider CK, Müller TH, Montag T (2008) Bacteria detection by flow cytometry. Clin Chem Lab Med 46:947–953

    Article  CAS  Google Scholar 

  113. Dunbar SA, Vander Zee CA, Oliver KG, Karem KL, Jacobson JW (2003) Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system. J Microbiol Methods 53:245–252

    Article  CAS  Google Scholar 

  114. Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363:71–82

    Article  CAS  Google Scholar 

  115. Kim JS, Anderson GP, Erickson JS, Golden JP, Nasir M, Ligler FS (2009) Multiplexed detection of bacteria and toxins using a microflow cytometer. Anal Chem 81:5426–5432

    Article  CAS  Google Scholar 

  116. Thangawng AL, Kim JS, Golden JP, Anderson GP, Robertson KL, Low V, Ligler FS (2010) A hard microflow cytometer using groove-generated sheath flow for multiplexed bead and cell assays their. Anal Bioanal Chem 398:1871–1881

    Article  CAS  Google Scholar 

  117. Kim JS, Ligler FS (2010) Utilization of microparticles in next-generation assays for microflow cytometers. Anal Bioanal Chem 398:2373–2382

    Article  CAS  Google Scholar 

  118. Giddings JC (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260:1456–1465

    Article  CAS  Google Scholar 

  119. Schimpf ME (2000) Field-flow fractionation handbook. In: Shimpf ME, Caldwell KC, Giddings JC (eds) Wiley-Interscience, New York

  120. Saenton S, Lee H, Gao YS, Ranville JF, Williams SKR (2000) Evaluation of different field flow fractionation techniques for separating bacteria. Sep Sci Technol 35:1761–1775

    Article  CAS  Google Scholar 

  121. Reschiglian P, Roda B, Zattoni A, Min BR, Moon MH (2002) High performance, disposable hollow fiber flow field-flow fractionation for bacteria and cells. First application to deactivated Vibrio cholerae. J Sep Sci 25:490–498

    Article  CAS  Google Scholar 

  122. Reschiglian P, Zattoni A, Roda B, Cinque L, Melucci D, Min BR, Moon MH (2003) Hyperlayer hollow-fiber flow field-flow fractionation of cells. J Chromatogr A 985:519–529

    Article  CAS  Google Scholar 

  123. Nilsson M, Birnbaum S, Wahlund KG (1996) Determination of relative amounts of ribosome and subunits in Escherichia coli using asymmetrical flow field-flow fractionation. J Biochem Biophys Methods 33:9–23

    Article  CAS  Google Scholar 

  124. Janča J, Halabalová V, Růžička J (2010) Role of the shape of various bacteria in their separation by Microthermal Field-Flow Fractionation. J Chromatogr A 1217:8062–8071

    Article  CAS  Google Scholar 

  125. Reschiglian P, Zattoni A, Roda B, Michelini E, Roda A (2005) Field-flow fractionation and biotechnology. Trends Biotechnol 23:475–483

    Article  CAS  Google Scholar 

  126. Roda B, Zattoni A, Reschiglian P, Moon MH, Mirasoli M, Michelini E, Roda A (2009) Field-flow fractionation in bioanalysis: a review of recent trends. Anal Chim Acta 635:132–143

    Article  CAS  Google Scholar 

  127. Reschiglian P, Zattoni A, Cinque L, Roda B, Dal Piaz F, Roda A, Moon MH, Min BR (2004) Hollow-fiber flow field-flow fractionation for whole bacteria analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 76:2103–2111

    Article  CAS  Google Scholar 

  128. Magliulo M, Roda B, Zattoni A, Michelini E, Luciani M, Lelli R, Reschiglian P, Roda A (2006) An innovative, flow-assisted, noncompetitive chemiluminescent immunoassay for the detection of pathogenic bacteria. Clin Chem 52:2151–2155

    Article  CAS  Google Scholar 

  129. Roda A, Mirasoli M, Roda B, Reschiglian P (2010) Flow-assisted analysis. In: Roda A (ed) Chemiluminescence and bioluminescence: past, present and future. Royal Society of Chemistry, Cambridge, pp 191–226

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Roda.

Additional information

The work was presented at the workshop of Biosensors for food safety and environmental monitoring, Ouarzazate, Morocco (October 06–08, 2011).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roda, A., Mirasoli, M., Roda, B. et al. Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178, 7–28 (2012). https://doi.org/10.1007/s00604-012-0824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0824-3

Keywords

Navigation