Skip to main content
Log in

Isothermal cycling and cascade signal amplification strategy for ultrasensitive colorimetric detection of nucleic acids

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have designed a novel isothermal cascade signal-amplification strategy for ultrasensitive colorimetric determination of nucleic acids. It is based on double-cycling amplification with formation of DNAzyme via a polymerase-induced strand-displacement reaction and nicking endonuclease-assisted recycling. The assay makes use of a hairpin DNA, a short primer, KF-polymerase, and nicking endonuclease. The presence of a target DNA triggers the strand-displacement and polymerization reaction with the formation of numerous DNAzyme molecules. Upon addition of H2O2 to the resulting mixture, the H2O2 reacts with 2,2′-azino-bis (3-ethylbenzothiozoline)-6-sulfonate to form a colored product in the aid of DNAzyme, which is quantified by photometry at 415 nm. Under optimal conditions, the assay allows target DNA to be determined at concentration as low as 0.6 aM.

Isothermal cycling and cascade signal amplification strategy has been developed for ultrasensitive colorimetric determination of nucleic acids by using DNA polymerase-induced strand-displacement and nicking endonuclease-assisted recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

References

  1. Lu W, Qin X, Luo Y, Chang G, Sun X (2011) CdS quantum dots as a fluorescent sensing platform for nucleic acid detection. Microchim Acta 175:355–359

    Article  CAS  Google Scholar 

  2. Ying Y, Zhang J, Gao R, Long Y (2013) Nanopore-based sequencing and detection of nucleic acids. Angew Chem Int Ed 52:13154–13161

    Article  CAS  Google Scholar 

  3. D’Agata R, Spoto G (2013) Surface plasmon resonance imaging for nucleic acid detection. Anal Bioanal Chem 405:573–584

    Article  Google Scholar 

  4. Rodiger S, Liebsch C, Schmidt C, Lehmann W, Resch-Genger U, Schedler U, Schierack P (2014) Nucleic acid detection based on the use of microbeads: a review. Microchim Acta 181:1151–1168

    Article  Google Scholar 

  5. Khodakov D, Ellis A (2014) Recent developments in nucleic acid identification using solid-phase enzymatic assays. Microchim Acta 181:1633–1646

    Article  CAS  Google Scholar 

  6. Palchetti I, Mascini M (2012) Electrochemical nanomaterial-based nucleic acid aptasensors. Anal Bioanal Chem 402:3103–3114

    Article  CAS  Google Scholar 

  7. Mascini M, Palchetti I, Tombelli S (2012) Nucleic acid and peptide aptamers: fundamental and bioanalytical aspects. Angew Chem Int Ed 51:1316–1332

    Article  CAS  Google Scholar 

  8. Perez I, Le Guiner C, Ni W, Lyles J, Moullier P, Snyder R (2013) PCR-based detection of gene transfer vectors: application to gene doping surveillance anti-doping analysis. Anal Bioanal Chem 405:9641–9653

    Article  CAS  Google Scholar 

  9. Prieto-Simon B, Samitier J (2014) “signal off” aptasensor based on enzyme inhibition induced by conformational switch. Anal Chem 86:1437–1444

    Article  CAS  Google Scholar 

  10. Blain J, Ricardo A, Szostak J (2014) Synthesis and nonenzymatic template-directed polymerization of 2′-amino-2′-deoxythreose nucleotides. J Am Chem Soc 136:2033–2039

    Article  CAS  Google Scholar 

  11. Jiang Y, Bhadra S, Li B, Ellington A (2014) Mismatches improve the performance of strand-displacement nucleic acid circuits. Angew Chem Int Ed 53:1845–1848

    Article  CAS  Google Scholar 

  12. Seok Y, Byun J, Mun H, Kim M (2014) Colorimetric detection of PCR products of DNA from pathogenic bacterial targets based on a simultaneously amplified DNAzyme. Microchim Acta. doi:10.1007/s00604-014-1297-3

    Google Scholar 

  13. Wang G, Zhu Y, He X, Chen L, Wang L, Zhang X (2014) Colorimetric and visual determination of melamine by exploiting the conformational change of hemin G-quadruplex-DNAzyme. Microchim Acta 181:411–418

    Article  CAS  Google Scholar 

  14. Tang Q, Yuan Y, Xiao X, Guo P, Hu J, Ma D, Gao Y (2013) DNAzyme based electrochemical sensors for trace uranium. Microchim Acta 180:1059–1064

    Article  CAS  Google Scholar 

  15. Ge C, Luo Q, Wang D, Zhao S, Liang X, Yu L, Xing X, Zeng L (2014) Colorimetric detection of copper(II) ion using click chemistry and Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme. Anal Chem 86:6387–6392

    Article  CAS  Google Scholar 

  16. Cheng Y, Huang Y, Lei J, Zhang L, Ju H (2014) Design and biosensing of Mg2+-dependent DNAzyme-triggered ratiometric electrochemiluminescence. Anal Chem 86:5158–5163

    Article  CAS  Google Scholar 

  17. Liu B, Zhang B, Chen G, Tang D (2014) An omega-like DNA nanostructure utilized for small molecule introduction to stimulate formation of DNAzyme–aptamer conjugates. Chem Commun 50:1900–1902

    Article  CAS  Google Scholar 

  18. Zhuang J, Lai W, Chen G, Tang D (2014) A rolling circle amplification-based DNA machine for miRNA screening coupling catalytic hairpin assembly with DNAzyme formation. Chem Commun 50:2935–2938

    Article  CAS  Google Scholar 

  19. Zhang B, Liu B, Tang D, Riessner R, Chen G, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84:5392–5399

    Article  CAS  Google Scholar 

  20. Fu L, Tang D, Zhuang J, Lai W, Que X, Chen G (2013) Hybridization-induced isothermal cycling signal amplification for sensitive electronic detection of nucleic acid. Biosens Bioelectron 47:106–112

    Article  CAS  Google Scholar 

  21. Lam B, Joyce G (2011) An isothermal system that couples ligand-dependent catalysis to ligand-independent exponential amplification. J Am Chem Soc 133:3191–3197

    Article  CAS  Google Scholar 

  22. Iscove N, Barbara M, Gu M, Gibson M, Modi, Winegarden N (2002) Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol 20:940–943

    Article  CAS  Google Scholar 

  23. Jia H, Li Z, Liu C, Cheng Y (2010) Ultrasensitive detection of microRNAs by exponential isothermal amplification. Angew Chem Int Ed 49:5498–5501

    Article  CAS  Google Scholar 

  24. Zhao J, Liu T, Fan Q, Li G (2011) A new strategy for a DNA assay based on a target-triggered isothermal exponential degradation reaction. Chem Commun 47:5262–5264

    Article  CAS  Google Scholar 

  25. Gao Y, Li B (2014) Exonuclease III-assisted cascade signal amplification strategy for label-free and ultrasensitive chemiluminescence detection of DNA. Anal Chem 86:8881–8887

    Article  Google Scholar 

  26. Kim M, Park K, Park H (2014) Ultrafast colorimetric detection of nucleic acids based on the inhibition of the oxidase activity of cerium oxide nanoparticles. Chem Commun 50:9577–9580

    Article  CAS  Google Scholar 

  27. Su X, The H, Lieu X, Gao Z (2007) Enzyme-based colorimetric detection of nucleic acids using peptide nucleic acid-immobilized microwell plates. Anal Chem 79:7192–7197

    Article  CAS  Google Scholar 

  28. Wang W, Zhao Y, Jin Y (2013) Gold-nanorod-based colorimetric and fluorescent approach for sensitive and specific assay of disease-related gene and mutation. ACS Appl Mater Interfaces 5:11741–11746

    Article  CAS  Google Scholar 

  29. Xu Y, Liu Y, Wu Y, Xia X, Liao Y, Li Q (2014) Fluorescent probe-based lateral flow assay for multiplex nucleic acid detection. Anal Chem 86:5611–5614

    Article  CAS  Google Scholar 

  30. Zhuang J, Tang D, Lai W, Chen G, Yang H (2014) Immobilization-free programmable hairpin probe for ultrosensitive electric monitoring of nucleic acid based on a biphasic reaction mode. Anal Chem 86:8400–8407

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from the “973” National Basic Research Program of China (2010CB732403), the NSFC of China (41176079), the NSF of Fujian Province (2011J06003), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1116) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu He or Dianping Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., He, Y., Gao, Z. et al. Isothermal cycling and cascade signal amplification strategy for ultrasensitive colorimetric detection of nucleic acids. Microchim Acta 182, 449–454 (2015). https://doi.org/10.1007/s00604-014-1385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1385-4

Keywords

Navigation