Skip to main content
Log in

OsMLO12, encoding seven transmembrane proteins, is involved with pollen hydration in rice

  • Original Article
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Abstract

Key message

MLO mediates pollen hydration.

Abstract

Hydration is the first step in pollen germination. However, the process is not well understood. OsMLO12 is highly expressed in mature pollen grains; plants containing alleles caused by transfer DNA insertions do not produce homozygous progeny. Reciprocal crosses between wild-type and OsMLO12/osmlo12 plants showed that the mutant alleles were not transmitted through the male gametophyte. Microscopic observations revealed that, although mutant grains became mature pollen with three nuclei, they did not germinate in vitro or in vivo due to a failure in hydration. The OsMLO12 protein has seven transmembrane motifs, with an N-terminal extracellular region and a C-terminal cytosolic region. We demonstrated that the C-terminal region mediates a calcium-dependent interaction with calmodulin. Our findings suggest that pollen hydration is regulated by MLO12, possibly through an interaction with calmodulin in the cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bahler M, Rhoads A (2002) Calmodulin signaling via the IQ motif. FEBS Lett 513:107–113

    Article  CAS  PubMed  Google Scholar 

  • Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci USA 102:3135–3140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Römheld V (2002) Boron in Plant Biology. Plant Biol 4:205–223

    Article  CAS  Google Scholar 

  • Buitink J, Claessens MM, Hemminga MA, Hoekstra FA (1998) Influence of water content and temperature on molecular mobility and intracellular glasses in seeds and pollen. Plant Physiol 118:531–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Romheld V (1997) Boron deficiency-induced impairments of cellular functions in plants. Plant Soil 193:71–83

    Article  CAS  Google Scholar 

  • Chen D, Ronald P (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57

    Article  CAS  Google Scholar 

  • Chen Z, Hartmann HA, Wu MJ, Friedman EJ, Chen JG, Pulley M, Schulze-Lefert P, Panstruga R, Jones AM (2006) Expression analysis of the AtMLO gene family encoding plant-specific seven-transmembrane domain proteins. Plant Mol Biol 60:583–597

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Noir S, Kwaaitaal M, Hartmann HA, Wu MJ, Mudgil Y, Sukumar P, Muday G, Panstruga R, Jones AM (2009) Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis. Plant Cell 21:1972–1991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dannel F, Pfeffer H, Römheld V (2002) Update on boron in higher plants—uptake, primary translocation and compartmentation. Plant Biol 4:193–204

    Article  CAS  Google Scholar 

  • Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 274:34993–35004

    Article  CAS  PubMed  Google Scholar 

  • Elleman CJ, Dickinson HG (1990) The role of the exine coating in pollen–stigma interactions in Brassica oleracea L. New Phytol 114:511–518

    Article  Google Scholar 

  • Elleman CJ, Franklin-Tong V, Dickinson HG (1992) Pollination in species with dry stigmas: the nature of the early stigmatic response and the pathway taken by pollen tubes. New Phytol 121:413–424

    Article  Google Scholar 

  • Fan LM, Wang YF, Wang H, Wu WH (2001) In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. J Exp Bot 52:1603–1614

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Horiuchi Y, Ueda Y, Mizuta Y, Kubo T, Yano K, Yamaki S, Tsuda K, Nagata T, Niihama M, Kato H, Kikuchi S, Hamada K, Mochizuki T, Ishimizu T, Iwai H, Tsutsumi N, Kurata N (2010) Rice expression atlas in reproductive development. Plant Cell Physiol 51:2060–2081

    Article  CAS  PubMed  Google Scholar 

  • Hannoufa A, Mcnevin J, Lemieux B (1993) Epicuticular waxes of Eceriferum mutants of Arabidopsis thaliana. Phytochemzstry 33:851–855

    Article  CAS  Google Scholar 

  • Herr JMJ (1982) An analysis of methods for permanently mounting ovules cleared in four-and a-half type clearing fluids. Stain Technol 57:161–169

    PubMed  Google Scholar 

  • Heslop-Harrison J (1979) An interpretation of the hydrodynamics of pollen. Am J Bot 66:737–743

    Article  Google Scholar 

  • Heslop-Harrison J (1987) Pollen germination and pollen tube growth. Int Rev Cytol 107:1–78

    Article  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence: intracellular hydrolysis of fluorescein diacetate. Stain Technol 45:115–120

    CAS  PubMed  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1992a) Germination of monocolpate Angiosperm Pollen: Effects of inhibitory factors and the Ca2+-channel blocker, Nifedipine. Ann Bot 69:395–403. http://aob.oxfordjournals.org/content/69/5/395

  • Heslop-Harrison Y, Heslop-Harrison J (1992b) Germination of monocolpate Angiosperm Pollen: Evolution of the actin cytoskeleton and wall during hydration, activation and tube emergence. Ann Bot 69:385–394. http://aob.oxfordjournals.org/content/69/5/385

  • Hiroi K, Sone M, Sakazono S, Osaka M, Masuko-Suzuki H, Matsuda T, Suzuki G, Suwabe K, Watanabe M (2013) Time-lapse imaging of self- and cross-pollinations in Brassica rapa. Ann Bot 112:115–122

    Article  PubMed Central  PubMed  Google Scholar 

  • Hobo T, Suwabe K, Aya K, Suzuki G, Yano K, Ishimizu T, Fujita M, Kikuchi S, Hamada K, Miyano M, Fujioka T, Kaneko F, Kazama T, Mizuta Y, Takahashi H, Shiono K, Nakazono M, Tsutsumi N, Nagamura Y, Kurata N, Watanabe M, Matsuoka M (2008) Various spatiotemporal expression profiles of anther-expressed genes in rice. Plant Cell Physiol 49:1417–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holdaway-Clarke TL, Feijo JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9:1999–2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwano M, Shiba H, Miwa T, Che FS, Takayama S, Nagai T, Miyawaki A, Isogai A (2004) Ca2+ dynamics in a pollen grain and papilla cell during pollination of Arabidopsis. Plant Physiol 136:3562–3571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwano M, Shiba H, Matoba K, Miwa T, Funato M, Entani T, Nakayama P, Shimosato H, Takaoka A, Isogai A, Takayama S (2007) Actin dynamics in papilla cells of Brassica rapa during self- and cross-pollination. Plant Physiol 144:72–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jayaprakash P, Sarla N (2001) Development of an improved medium for germination of Cajanus cajan (L.) Millsp. pollen in vitro. J Exp Bot 52:851–855

    CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  CAS  PubMed  Google Scholar 

  • Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jorgensen JH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152

    Article  Google Scholar 

  • Kariya K (1989) Sterility caused by cooling treatment at the flowering stage in rice plants. Jpn J Crop Sci 58:96–102

    Article  Google Scholar 

  • Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U (2010) Conserved molecular components for pollen tube reception and fungal invasion. Science 330:968–971

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Eu YJ, Yoo CM, Kim YW, Pih KT, Jin JB, Kim SJ, Stenmark H, Hwang I (2001) Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell 13:287–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim MC, Lee SH, Kim JK, Chun HJ, Choi MS, Chung WS, Moon BC, Kang CH, Park CY, Yoo JH, Kang YH, Koo SC, Koo YD, Jung JC, Kim ST, Schulze-Lefert P, Lee SY, Cho MJ (2002a) Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue. J Biol Chem 277:19304–19314

    Article  CAS  PubMed  Google Scholar 

  • Kim MC, Panstruga R, Elliott C, Muller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002b) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416:447–451

    Article  CAS  PubMed  Google Scholar 

  • Kim SR, Lee DY, Yang JI, Moon S, An G (2009) Cloning vectors for rice. J Plant Biol 52:73–78

    Article  CAS  Google Scholar 

  • Koch KE, Wu Y, Xu J (1996) Sugar and metabolic regulation of genes for sucrose metabolism: potential influence of maize sucrose synthase and soluble invertase responses on carbon partitioning and sugar sensing. J Exp Bot 47:1179–1185

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhu H (2008) Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene 409:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Liu ZH, Chu CP, Hu ZY, Wang XL, Zhang XS (2012) Different regulatory processes control pollen hydration and germination in Arabidopsis. Sex Plant Reprod 25:77–82

    Article  CAS  PubMed  Google Scholar 

  • Matoh T, Ken-ichi I, Ohno K, Azuma J-i (1993) Isolation and characterization of a boron-polysaccharide complex from Radish roots. Plant Cell Physiol 34:639–642. http://pcp.oxfordjournals.org/content/34/4/639.full.pdf

  • Matoh T, Takasaki M, Takabe K, Kobayashi M (1998) Immunocytochemistry of rhamnogalacturonan II in cell walls of higher plants. Plant Cell Physiol 39:483–491 doi:10.1093/oxfordjournals.pcp.a029395

  • Mayfield JA, Preuss D (2000) Rapid initiation of Arabidopsis pollination requires the oleosin-domain protein GRP17. Nat Cell Biol 2:128–130

    Article  CAS  PubMed  Google Scholar 

  • Pacini E (1990) Harmomegathic characters of Pteridophyta spores and Spermatophyta pollen. Plant Syst Evol Suppl 5:53–69

    Article  Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M, Hepler PK (1994) Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell 6:1815–1828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G, Hepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174:160–173

    Article  CAS  PubMed  Google Scholar 

  • Preuss D, Lemieux B, Yen G, Davis RW (1993) A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev 7:974–985

    Article  CAS  PubMed  Google Scholar 

  • Sarker RH, Elleman CJ, Dickinson HG (1988) Control of pollen hydration in Brassica requires continued protein synthesis, and glycosylation in necessary for intraspecific incompatibility. Proc Natl Acad Sci USA 85:4340–4344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulze-Lefert P, Panstruga R (2003) Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41:641–667

    Article  CAS  PubMed  Google Scholar 

  • Simons G et al (1997) AFLP-based fine mapping of the Mlo gene to a 30-kb DNA segment of the barley genome. Genomics 44:61–70

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    Article  CAS  PubMed  Google Scholar 

  • Steinhorst L, Kudla J (2013) Calcium—a central regulator of pollen germination and tube growth. Biochim Biophys Acta 1833:1573–1581

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Fujiwara T (2008) Physiological roles and transport mechanisms of boron: perspectives from plants. Pflugers Arch 456:671–677

    Article  CAS  PubMed  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen-tube growth. Nature 392:818–821

    Article  CAS  PubMed  Google Scholar 

  • Yi J, An G (2013) Utilization of T-DNA Tagging Lines in Rice. J Plant Biol 56:85–90

    Article  CAS  Google Scholar 

  • Zhang DB, Wilson ZA (2009) Stamen specification and anther development in rice. Chin Sci Bull 54:2342–2353

    Article  CAS  Google Scholar 

  • Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis. Protoc Nucleic Acids Res 32:e115

    Article  Google Scholar 

Download references

Acknowledgments

We thank Kyungsook An and Sunghae Hong for managing the transgenic lines. This work was supported in part by grants from the Next-Generation BioGreen 21 Program (No. PJ008215), Rural Development Administration, Republic of Korea; the Basic Research Promotion Fund, Republic of Korea (NRF-2007-0093862); Kyung Hee University (20130214) to G.A.; and the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2013R1A6A3A01026391) to J. Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gynheung An.

Additional information

Communicated by Venkatesan Sundaresan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, J., An, S. & An, G. OsMLO12, encoding seven transmembrane proteins, is involved with pollen hydration in rice. Plant Reprod 27, 169–180 (2014). https://doi.org/10.1007/s00497-014-0249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-014-0249-8

Keywords

Navigation