Skip to main content

Advertisement

Log in

Physiological roles and transport mechanisms of boron: perspectives from plants

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Boron, an orphan of the periodic table of the elements, is unique not only in its chemical properties but also in its roles in biology. Its requirement in plants was described more than 80 years ago. Understandings of the molecular basis of the requirement and transport have been advanced greatly in the last decade. This article reviews recent findings of boron function and transport in plants and discusses possible implication to other organisms including humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  2. Woods WG (1996) Review of possible boron speciation relating to its essentiality. J Trace Elem Exp Med 9:153–163

    Article  CAS  Google Scholar 

  3. Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Romheld V (2002) Boron in plant biology. Plant Biol 4:205–223

    Article  CAS  Google Scholar 

  4. Devirian TA, Volpe SL (2003) The physiological effects of dietary boron. Crit Rev Food Sci Nutr 43:219–231

    Article  PubMed  CAS  Google Scholar 

  5. WHO (1998) Boron. In: Environmental Health Criteria Monograph 204. Geneva, World Health Organization, ICPCS 1–125

  6. Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121–148

    Article  CAS  Google Scholar 

  7. Bolanos L, Lukaszewski K, Bonilla I, Blevins D (2004) Why boron? Plant Physiol Biochem 42:907–912

    Article  PubMed  CAS  Google Scholar 

  8. Yan X, Wu P, Ling H, Xu G, Xu F, Hang Q (2006) Plant nutriomics in China: an overview. Ann Bot 98(3):473–482

    Article  PubMed  CAS  Google Scholar 

  9. Yau SK, Nachit MM, Hamblin J, Ryan J (1995) Phenotypic variation in boron-toxicity tolerance at seedling stage in durum wheat (Triticum durum). Euphutica 83:185–191

    Article  Google Scholar 

  10. Warington K (1923) The effect of boric acid and borax on the broad bean and certain other. Ann Bot 27:629–672

    Google Scholar 

  11. Dell B, Huang L (1997) Physiological response of plants to low boron. Plant Soil 193:103–120

    Article  CAS  Google Scholar 

  12. Yazbeck C, Kloppmann W, Cottier R, Sahuquillo J, Debotte G, Huel G (2005) Health impact evaluation of boron in drinking water: a geographical risk assessment in northern France. Environ Geochem Health 27:419–427

    Article  PubMed  CAS  Google Scholar 

  13. Loomis WD, Durst RW (1992) Chemistry and biology of boron. Biofactors 3:229–239

    PubMed  CAS  Google Scholar 

  14. Rowe RI, Eckhert CD (1999) Boron is required for zebrafish embryogenesis. J Exp Bot 202:1649–1654

    CAS  Google Scholar 

  15. Fort DJ, Propst TL, Stover EL, Strong PL, Murray FJ (1998) Adverse reproductive and developmental effects in Xenopus from insufficient boron. Biol Trace Elem Res 66:237–259

    Article  PubMed  CAS  Google Scholar 

  16. Goldbach HE (1997) A critical review on current hypotheses concerning the role of boron in higher plants: suggestions for further research and methodological requirements. J Trace Micer Techn 15:51–91

    CAS  Google Scholar 

  17. Goldbach HE, Yu Q, Wingender R, Schulz M, Wimmer M, Findeklee P, Baluka F (2001) Rapid response reactions of roots to boron deprivation. J Plant Nut Soil Sci 164:173–181

    Article  CAS  Google Scholar 

  18. Kobayashi M, Matoh T, Azuma J (1996) Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol 110:1017–1020

    PubMed  CAS  Google Scholar 

  19. O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    Article  PubMed  CAS  Google Scholar 

  20. O’Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis. Growth Science 294:846–849

    CAS  Google Scholar 

  21. Brown PH, Shelp BJ (1997) Boron mobility in plants. Plant Soil 193:85–101

    Article  CAS  Google Scholar 

  22. Brown PH, Hu H (1996) Phloem mobility of boron is species dependent. Evidence for phloem mobility in sorbitol rich species. Ann Bot 77:497–505

    Article  CAS  Google Scholar 

  23. Brown PH, Hu H (1998) Boron mobility and consequent management in different crops. Better Crops 82:28–31

    Google Scholar 

  24. Brown PH, Bellaloui N, Hu H, Dandekar A (1999) Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physiol 110:17–20

    Article  Google Scholar 

  25. Noguchi K, Dannel F, Pfeffer H, Romheld V, Hayashi H, Fujiwara T (2000) Defect in root-shoot translocation of boron in Arabidopsis thaliana mutant bor1-1. J Plant Physiol 156:751–755

    CAS  Google Scholar 

  26. Takano J, Yamagami M, Noguchi K, Hayashi H, Fujiwara T (2001) Preferential translocation of boron to young leaves in Arabidopsis thaliana regulated by the BOR1 gene. Soil Sci Plant Nutr 47:345–357

    CAS  Google Scholar 

  27. Stangolius JC, Brown PH, Bellaloui N, Reid RJ, Graham RD (2001) The efficiency of boron ulitisation in canola. Aust J Plant Physiol 28:1109–1114

    Google Scholar 

  28. Matoh T, Ochiai K (2005) Distribution and partitioning of newly take-up boron in sunflower. Plant Soil 278:351–360

    Article  CAS  Google Scholar 

  29. Raven JA (1980) Short- and long-distance transport of boric acid in plants. New Phytol 84:231–249

    Article  CAS  Google Scholar 

  30. Dordas C, Brown PH (2000) Permeability of boric acid across lipid bilayers and factors affecting it. J Membr Biol 175:95–105

    Article  PubMed  CAS  Google Scholar 

  31. Dordas C, Brown PH (2001) Evidence for channel mediated transport of boric acid in squash (Cucurbita pepo). Plant Soil 235:95–103

    Article  CAS  Google Scholar 

  32. Stangoulis JCR, Reid RJ, Brown PH, Graham RD (2001) Kinetic analysis of boron transport in Chara. Planta 213:142–146

    Article  PubMed  CAS  Google Scholar 

  33. Dannel F, Pfeffer H, Romheld V (2000) Characterization of root boron pools, boron uptake and boron translocation in sunflower using the stable isotopes 10B and 11B. Aust J Plant Physiol 27:397–405

    CAS  Google Scholar 

  34. Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  PubMed  CAS  Google Scholar 

  35. Noguchi K, Yasumori M, Imai T, Naito S, Matsunaga T, Oda H, Hayashi H, Chino M, Fujiwara T (1997) bor1-1, an Arabidopsis thaliana mutant that requires a high level of boron. Plant Physiol 115:901–906

    Article  PubMed  CAS  Google Scholar 

  36. Takano J, Miwa K, Yuan L, von Wiren N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. PNAS 102:12276–12281

    Article  PubMed  CAS  Google Scholar 

  37. Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of OsBOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19:2624–2635

    Article  PubMed  CAS  Google Scholar 

  38. Park M, Li Q, Shcheynikov N, Zeng W, Muallern S (2004) NaBC1 is a ubiquitous electrogenic Nat-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol Cell 16:331–341

    Article  PubMed  CAS  Google Scholar 

  39. Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1361

    Article  PubMed  CAS  Google Scholar 

  40. Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  Google Scholar 

  41. Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194

    Article  PubMed  CAS  Google Scholar 

  42. Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biology Cell 97:397–414

    Article  CAS  Google Scholar 

  43. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysee L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  PubMed  CAS  Google Scholar 

  44. Mauel C (2007) Plant aquaporin: nove functions and regulation properties. FEBS Lett 581:2227–2236

    Article  Google Scholar 

  45. Rivers RL, Dean RM, Chandy G, Hall JE, Roberts DM, Zeidel ML (1997) Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J Biol Chem 272:16256–16261

    Article  PubMed  CAS  Google Scholar 

  46. Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta 1758:1165–1175

    Article  PubMed  CAS  Google Scholar 

  47. Guenther JF, Chanmanivone N, Galetovic MP, Wallace IS, Cobb JA, Roberts DM (2003) Phosphorylation of nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15:981–991

    Article  PubMed  CAS  Google Scholar 

  48. Wallace IS, Roberts DM (2002) Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry 44:16826–16834

    Article  Google Scholar 

  49. Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins: classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068

    Article  PubMed  CAS  Google Scholar 

  50. Wallace IS, Roberts DM (2005) Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry 44:16826–16834

    Article  PubMed  CAS  Google Scholar 

  51. Choi WG, Roberts MD (2007) Arabidopsis NIP2;1: a major intrinsic protein transporter of lactic acid induced by anoxic stress. J Biol Chem 33:24209–24218

    Article  Google Scholar 

  52. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  53. Weig AR, Jakob C (2000) Functional identification of the glycerol permease activity of Arabidopsis thaliana NLM1 and NLM2 proteins by heterologous expression in Saccharomyces cerevisiae. FEBS Lett 481:293–298

    Article  PubMed  CAS  Google Scholar 

  54. Klebl F, Wolf M, Sauer N (2003) A defect in the yeast plasma membrane urea transporter Dur3p is complemented by CpNIP1, a Nod26-like protein from zucchini (Cucurbita pepo L.), and by Arabidopsis thaliana delta-TIP or gamma-TIP. FEBS Lett 547:69–74

    Article  PubMed  CAS  Google Scholar 

  55. Hanaoka H, Fujiwara F (2007) Channel-mediated boron transport in rice. Plant Cell Physiol 48:227

    Google Scholar 

  56. Tsukaguchi H, Shayaku Cl, Berger UV, Mackenzie B, Devidas S, Guggino WB, Hoek AN, Hediger MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 38:24737–24743

    Article  Google Scholar 

  57. Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (1999) Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am J Physiol Renal Physiol 277:685–696

    Google Scholar 

Download references

Acknowledgements

The present review is in part based on the daily discussion with the members of our laboratory, and we would like to specially thank Drs. Junpei Takano, Hideki Hanaoka, and Kyoko Miwa for sharing thoughts and information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Fujiwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M., Fujiwara, T. Physiological roles and transport mechanisms of boron: perspectives from plants. Pflugers Arch - Eur J Physiol 456, 671–677 (2008). https://doi.org/10.1007/s00424-007-0370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0370-8

Keywords

Navigation