Skip to main content
Log in

Immuno-cytogenetic manifestation of epigenetic chromatin modification marks in plants

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Histone proteins and the nucleosomes along with DNA are the essential components of eukaryotic chromatin. Post-translational histone–DNA interactions and modifications eventually offer significant alteration in the chromatin environment and potentially influence diverse fundamental biological processes, some of which are known to be epigenetically inherited and constitute the “epigenetic code”. Such chromatin modifications evidently uncover remarkable diversity and biological specificity associated with distinct patterns of covalent histone marks. The past few years have witnessed major breakthroughs in plant biology research by utilizing chromatin modification-specific antibodies through molecular cytogenetic tools to ascertain hallmark signatures of chromatin domains on the chromosomes. Here, we survey current information on chromosomal distribution patterns of chromatin modifications with special emphasis on histone methylation, acetylation, phosphorylation, and centromere-specific histone 3 (CENH3) marks in plants using immuno-FISH as a basic tool. Major available information has been classified under typical and comparative cytogenetic detection of chromatin modifications in plants. Further, spatial distribution of chromatin environment that exists between different cell types such as angiosperm/gymnosperm, monocot/dicot, diploid/polyploids, vegetative/generative cells, as well as different stages, i.e., mitosis versus meiosis has also been discussed in detail. Several challenges and future perspectives of molecular cytogenetics in the grooming field of plant chromatin dynamics have also been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ausín I, Alonso-Blanco C, Jarillo JA, Ruiz-García L, Martínez-Zapater JM (2004) Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet 36:162–166

    Article  PubMed  Google Scholar 

  • Belyaev ND, Houben A, Baranczewski P, Schubert I (1998) The acetylation patterns of histones H3 and H4 along Vicia faba chromosomes are different. Chromosome Res 6:59–63

    Article  CAS  PubMed  Google Scholar 

  • Braszewska-Zalewska A, Bernas T, Maluszynska J (2010) Epigenetic chromatin modifications in Brassica genomes. Genome 53:203–210

    Article  CAS  PubMed  Google Scholar 

  • Caperta AD, Rosa M, Delgado M et al (2008) Distribution patterns of phosphorylated Thr 3 and Thr 32 of histone H3 in plant mitosis and meiosis. Cytogenet Genome Res 122:73–79

    Article  CAS  PubMed  Google Scholar 

  • Carchilan M, Delgado M, Ribeiro T, Costa-Nunes P, Caperta A et al (2007) Transcriptionally active heterochromatin in rye B chromosomes. Plant Cell 19:1738–1749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demidov D, Schubert V, Kumke K et al (2014) Anti-hosphorylated histone H2AThr120: a universal microscopic marker for centromeric chromatin of mono- and holocentric plant species. Cytogenet Genome Res. doi:10.1159/000360018

    PubMed  Google Scholar 

  • Dong Q, Han F (2012) Phosphorylation of histone H2A is associated with centromere function and maintenance in meiosis. Plant J 71:800–809

    Article  CAS  PubMed  Google Scholar 

  • Dunemann F, Schrader O, Budahn H, Houben A (2014) Characterization of Centromeric Histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.). PLoS One 9:e98504. doi:10.1371/journal.pone.0098504

    Article  PubMed Central  PubMed  Google Scholar 

  • Earley KW, Shook MS, Brower-Toland B, Hicks L, Pikaard CS (2007) In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J 52:615–626

    Article  CAS  PubMed  Google Scholar 

  • Fu S, Lv Z, Gao Z et al (2013) De novo centromere formation on a chromosome fragment in maize. Proc Natl Acad Sci USA 110:6033–6036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuchs J, Demidov D, Houben A, Schubert I (2006) Chromosomal histone modification patterns—from conservation to diversity. Trends Plant Sci 11:199–208

    Article  CAS  PubMed  Google Scholar 

  • Fuchs J, Jovtchev G, Schubert I (2008) The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms. Chromosome Res 16:891–898

    Article  CAS  PubMed  Google Scholar 

  • Granot G, Sikron-Persi N, Gaspan O et al (2009) Histone modifications associated with drought tolerance in the desert plant Zygophyllum dumosum Boiss. Planta 231:27–34

    Article  CAS  PubMed  Google Scholar 

  • Gruenbaum Y, Naveh-Many T, Cedar H, Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862

    Article  CAS  PubMed  Google Scholar 

  • He Y, Amasino RM (2005) Role of chromatin modification in flowering-time control. Trends Plant Sci 10:30–35

    Article  CAS  PubMed  Google Scholar 

  • He S, Yan S, Wang P, Zhu W, Wang X et al (2014) Comparative analysis of genome-wide chromosomal histone modification patterns in maize cultivars and their wild relatives. PLoS ONE 9(5):e97364. doi:10.1371/journal.pone.0097364

    Article  PubMed Central  PubMed  Google Scholar 

  • Hirsch CD, Wu Y, Yan H, Jiang J (2009) Lineage-specific adaptive evolution of the centromeric protein CENH3 in diploid and allotetraploid Oryza species. Mol Biol Evol 26:2877–2885

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Schubert I (2003) DNA and proteins of plant centromeres. Curr Opin Plant Biol 6:554–560

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Belyaev ND, Turner BM, Schubert I (1996) Differential immunostaining of plant chromosomes by antibodies recognizing acetylated histone H4 variants. Chromosome Res 4:191–194

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Belyaev ND, Leach CR, Timmis JN (1997) Differences of histone H4 acetylation and replication timing between A and B chromosomes of Brachycome dichromosomatica. Chromosome Res 5:233–237

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Wako T, Furushima-Shimogawara R et al (1999) The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J 18:675–679

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I (2003) Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33:967–973

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Demidov D, Rutten T, Scheidtmann KH (2005) Novel phosphorylation of histone H3 at threonine 11 that temporally correlates with condensation of mitotic and meiotic chromosomes in plant cells. Cytogenet Genome Res 109:148–155

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L (2007) Phosphorylation of histone H3 in plants–a dynamic affair. Biochim Biophys Acta 1769:308–315

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Kumke K, Nagaki K, Hause G (2011) CENH3 distribution and differential chromatin modifications during pollen development in rye (Secale cereale L.). Chromosome Res 19:471–480

    Article  CAS  PubMed  Google Scholar 

  • Iwata A, Tek AL, Richard MMS et al (2013) Identification and characterization of functional centromeres of the common bean. Plant J 76:47–60

    CAS  PubMed  Google Scholar 

  • Jackson JP, Johnson L, Jasencakova Z et al (2004) Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112:308–315

    Article  CAS  PubMed  Google Scholar 

  • Janousek B, Zluvova J, Vyskot B (2000) Histone H4 acetylation and DNA methylation dynamics during pollen development. Protoplasma 211:116–122

    Article  CAS  Google Scholar 

  • Jasencakova Z, Soppe WJ, Meister A, Gernand D, Turner BM, Schubert I (2003) Histone modifications in Arabidopsis––high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. Plant J 33:471–480

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Lamb JC, Zhang W, Kolano B, Birchler JA, Jiang J (2008) Histone modifications associated with both A and B chromosomes of maize. Chromosome Res 16:1203–1214

    Article  CAS  PubMed  Google Scholar 

  • Koo DH, Jiang JM (2009) Super-stretched pachytene chromosomes for fluorescence in situ hybridization mapping and immunodetection of DNA methylation. Plant J 59:509–516

    Article  CAS  PubMed  Google Scholar 

  • Koo DH, Han F, Birchler JA, Jiang J (2011) Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. Genome Res 21:908–914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Lavania UC, Srivastava S, Lavania S, Basu S, Misra NK, Mukai Y (2012) Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J 71:539–549

    Article  CAS  PubMed  Google Scholar 

  • Lee HR, Zhang W, Langdon T et al (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793–11798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu B, Wendel JF (2003) Epigenetic phenomena and the plant development. Proc Natl Acad Sci USA 93:8449–8454

    Google Scholar 

  • Liu Z, Yue W, Li DY et al (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 10:445–456

    Article  Google Scholar 

  • Nagaki K, Murata M (2005) Characterization of CENH3 and centromere- associated DNA sequences in sugarcane. Chromosome Res 13:195–203

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S et al (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2005) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:1886–1893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2009) A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco. Chromosoma 118:249–257

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Shibata F, Suzuki G et al (2011) Coexistence of NtCENH3 and two retrotransposons in tobacco centromeres. Chromosome Res 19:591–605

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Shibata F, Kanatani A, Kashihara K, Murata M (2012a) Isolation of centromeric-tandem repetitive DNA sequences by chromatin affinity purification using a HaloTag7-fused centromere-specific histone H3 in tobacco. Plant Cell Rep 31:771–779

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Yamamoto M, Yamaji N, Mukai Y, Murata M (2012b) Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium. PLoS One. doi:10.1371/journal.pone.0051315

    PubMed Central  PubMed  Google Scholar 

  • Neumann P, Navratilova A, Schroeder-Reiter E et al (2012) Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet. doi:10.1371/journal.pgen.1002777

    PubMed Central  PubMed  Google Scholar 

  • Okada M, Cheeseman IM, Hori T et al (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8:446–457

    Article  CAS  PubMed  Google Scholar 

  • Oliver C, Pradillo M, Corredor E, Cuñado N (2013) The dynamics of histone H3 modifications is species-specific in plant meiosis. Planta 238:23–33

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Houben A, Kumlehn J, Melzer M, Rutten T (2013) Chromatin alterations during pollen development in Hordeum vulgare. Cytogenet Genome Res 141:50–57

    Article  CAS  PubMed  Google Scholar 

  • Probst AV, Fransz PF, Paszkowski J, Scheid OM (2003) Two means of transcriptional reactivation within heterochromatin. Plant J 33:743–749

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–619

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Chan SWL (2013) Centromere-mediated generation of haploid plants. In: Jiang J, Birchler JA (eds) Plant Centromere Biology. Wiley-Blackwell, Oxford, UK, pp 169–181

    Chapter  Google Scholar 

  • Ribeiro T, Viegas W, Morais-Cecílio L (2009) Epigenetic marks in the mature pollen of Quercus suber L. (Fagaceae). Sex Plant Reprod 22:1–7

    Article  CAS  PubMed  Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA 108:E498–E505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sano Y, Tanaka I (2010) Distinct localization of histone H3 methylation in the vegetative nucleus of lily pollen. Cell Biol Int 34:253–259

    Article  CAS  PubMed  Google Scholar 

  • Servet C, Benhamed M, Latrasse D, Kim W, Delarue M, Zhou DX (2008) Characterization of a phosphatase 2C protein as an interacting partner of the histone acetyltransferase GCN5 in Arabidopsis. Biochim Biophys Acta 1779:376–382

    Article  CAS  PubMed  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi J, Dawe RK (2006) Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27. Genetics 173:1571–1583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100:13225–13230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soppe WJJ, Jasencakova Z, Houben A et al (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 21:6549–6559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  • Suzuki G, Shiomi M, Morihana S, Yamamoto M, Mukai Y (2010) DNA methylation and histone modification in onion chromosomes. Genes Genet Syst 85:377–382

    Article  PubMed  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tek AL, Kashihara K, Murata M, Nagaki K (2010) Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon. Chromosome Res 18:337–347

    Article  CAS  PubMed  Google Scholar 

  • Tek AL, Kashihara K, Murata M, Nagaki K (2011) Functional centromeres in Astragalus sinicus include a compact centromere-specific histone H3 and a 20-bp tandem repeat. Chromosome Res 19:969–978

    Article  CAS  PubMed  Google Scholar 

  • Tek AL, Kashihara K, Murata M, Nagaki K (2014) Identification of the centromere-specific histone H3 variant in Lotus japonicus. Gene 538:8–11

    Article  CAS  PubMed  Google Scholar 

  • Turner BM, Laura PO, Allan IM (1989) Histone H4 acetylation in human cells frequency of acetylation at different sites defined by immunolabeling with site-specific antibodies. FEBS Lett 253:141–145

    Article  CAS  PubMed  Google Scholar 

  • Vyskot B, Siroky J, Hladilova R, Belyaev ND, Turner BM (1998) Euchromatic domains in plant chromosomes as revealed by H4 histone acetylation and early DNA replication. Genome 42:343–350

    Article  Google Scholar 

  • Wang G, He Q, Cheng Z, Talbert PB, Jin W (2011) Characterization of CENH3 proteins and centromere-associated DNA sequences in diploid and allotetraploid Brassica species. Chromosoma 120:353–365

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Bai J, Duan Q, Costa M, Dai W (2009) Covalent modifications of histones during mitosis and meiosis. Cell Cycle 8:3688–3694

    Article  CAS  PubMed  Google Scholar 

  • Yue M, Li Q, Zhang Y, Zhao Y, Zhang Z et al (2013) Histone H4R3 methylation catalyzed by SKB1/PRMT5 is required for maintaining shoot apical meristem. PLoS One 8:e83258. doi:10.1371/journal.pone.0083258

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang K, Sridhar VV, Zhu J, Kapoor A, Zhu JK (2007) Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS One 2:e1210. doi:10.1371/journal.pone.0001210

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang WL, Lee HR, Koo DH, Jiang JM (2008) Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20:25–34

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhong CX, Marshall JB, Topp C et al (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou DX (2009) Regulatory mechanism of histone epigenetic modifications in plants. Epigenetics 4:15–18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Japan Society for the Promotion of Science (JSPS), Japan for providing postdoctoral fellowship and research grant (SKS, no. P13399/2013). Sincere thanks are also due to Dr. Go Suzuki and all members of Plant Molecular Genetics Laboratory, Osaka Kyoiku University, Osaka, Japan for their constant encouragement and help. We apologize to those authors whose works we could not cite because of space limitations.

Conflict of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S.K., Yamamoto, M. & Mukai, Y. Immuno-cytogenetic manifestation of epigenetic chromatin modification marks in plants. Planta 241, 291–301 (2015). https://doi.org/10.1007/s00425-014-2233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2233-9

Keywords

Navigation