Skip to main content

Advertisement

Log in

Coexistence of NtCENH3 and two retrotransposons in tobacco centromeres

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Although a centromeric DNA fragment of tobacco (Nicotiana tabacum), Nt2-7, has been reported, the overall structure of the centromeres remains unknown. To characterize the centromeric DNA sequences, we conducted a chromatin immunoprecipitation assay using anti-NtCENH3 antibody and chromatins isolated from two ancestral diploid species (Nicotiana sylvestris and Nicotiana tomentosiformis) of N. tabacum and isolated a 178-pb fragment, Nto1 from N. tomentosiformis, as a novel centromeric DNA. Fluorescence in situ hybridization (FISH) showed that Nto1 localizes on 24 out of 48 chromosomes in some cells of a BY-2 cell line. To identify the origins of the Nt2-7 and Nto1, a tobacco bacterial artificial chromosome (BAC) library was constructed from N. tabacum, and then screened by polymerase chain reaction (PCR) with primer sets designed from the Nt2-7 and Not1 DNA sequences. Twelve BAC clones were found to localize on the centromeric regions by FISH. We selected three BAC clones for sequencing and identified two centromeric retrotransposons, NtCR and NtoCR, the DNA sequences of which are similar to that of Nt2-7 and Nto1, respectively. Quantitative PCR analysis using coprecipitated DNA with anti-NtCENH3 clearly showed coexistence of NtCENH3 with both retrotransposons. These results indicate the possibility that these two retrotransposons act as centromeric DNA sequences in tobacco. NtoCR was found to be specific to N. tomentosiformis and T genome of N. tabacum, and a NtCR-like centromeric retrotransposon (TGRIV) exists in tomato. This specificity suggests that the times of amplification of these centromeric retrotransposons were different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

Av:

Average

BAC:

Bacterial artificial chromosome

BLAST:

The basic local alignment search tool

BLASTN:

BLAST for nucleotide

CENH3:

Centromere-specific histone H3

CentC:

Centromeric repeat type C in maize

CentO:

Centromeric tandem repeat in Oryza sativa

CHEF:

Clamped homogeneous electric fields

ChIP:

Chromatin immunoprecipitation

CR:

Centromeric retrotransposon

CRM:

Centromeric retrotransposon in maize

CRR:

Centromeric retrotransposon in rice

CRW:

Centromeric retrotransposon in wheat

DAPI:

4,6-Diamino-2-phenylindole

DIG:

Digoxigenin

EDTA:

Ethylendiaminetetraacetic acid

FIGE:

Field inversion gel electrophoresis

FISH:

Fluorescence in situ hybridization

FITC:

Fluorescein isothiocianate

IPTG:

Isopropylthio-β-d-galactoside

LB medium:

Luria–Bertani medium

LTR:

Long terminal repeat

MES:

2-(N-morpholino) ethanesulfonic acid

MYA:

Million years ago

NtCENH3:

Nicotiana tabacum centromere-specific histone H3

NtCR:

Nicotiana tabacum centromeric retrotransposon

NtCR-NA:

Nicotiana tabacum centromeric retrotransposon non-autonomous type

NtoCR:

Nicotiana tomentosiformis centromeric retrotransposon

Tukey HSD:

Tukey’s honestly significant difference

Pel fraction:

Bound fractions in ChIP

PMSF:

Phenylmethylsulfonyl fluoride

qPCR:

Real-time quantitative PCR

SE:

Standard error

SDS:

Sodium dodecyl sulfate

STE lysis buffer:

SDS Tris and EDTA lysis buffer

TBS:

Tris-buffered saline

TGRIV:

Tomato genomic repeat IV

Tris:

Tris (hydroxymethyl) aminomethane

X-gal:

5-Bromo-4-chloro-3-indolyl-β-d-galactoside

References

  • Aragon-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G (1996) A cereal centromeric sequence. Chromosoma 105:261–268

    Article  PubMed  CAS  Google Scholar 

  • Chang SB, Yang TJ, Datema E, van Vugt J, Vosman B, Kuipers A, Meznikova M, Szinay D, Lankhorst RK, Jacobsen E, de Jong H (2008) FISH mapping and molecular organization of the major repetitive sequences of tomato. Chromosome Res 16:919–933

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    Article  PubMed  CAS  Google Scholar 

  • Choo KHA (1997) The centromere. Oxford University Press, Oxford

    Google Scholar 

  • Clarke L, Carbon J (1983) Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature 305:23–28

    Article  PubMed  CAS  Google Scholar 

  • Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H, Otsuki H, Yoshikawa M, Otsuki Y, Sugimoto K, Takeda S (1996) Autonomous transposition of the tobacco retrotransposon Tto1 in rice. Plant Cell 8:725–734

    Article  PubMed  CAS  Google Scholar 

  • Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H (2002) Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res 9:117–121

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283

    Article  PubMed  CAS  Google Scholar 

  • Hudakova S, Michalek W, Presting GG, ten Hoopen R, dos Santos K, Jasencakova Z, Schubert I (2001) Sequence organization of barley centromeres. Nucleic Acids Res 29:5029–5035

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jiang J, Nasuda S, Dong F, Scherrer CW, Woo S, Wing RA, Gill BS, Ward DC (1996) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Matsumoto T, Koiwai A, Mizusaki S, Nishida K, Noguchi M, Tamaki E (1972) Liquid suspension culture of tobacco cells. In: Terui G (ed) Fermentation technology today. Osaka, Society of Fermentation Technology of Japan, pp 689–695

    Google Scholar 

  • Kim U-J, Birren BW, Slepak T, Mancino V, Boysen C, Kang H-L, Simon MI, Shizuya H (1996) Construction and characterization of a human bacterial artificial chromosome library. Genomics 34:213–218

    Article  PubMed  CAS  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2000) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNA Res 7:315–321

    Article  PubMed  CAS  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2001) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res 8:285–290

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793–11798

    Article  PubMed  CAS  Google Scholar 

  • Lim KY, Skalicka K, Koukalova B, Volkov RA, Matyasek R, Hemleben V, Leitch AR, Kovarik A (2004) Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana. Genetics 166:1935–1946

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yue W, Li D, Wang RR, Kong X, Lu K, Wang G, Dong Y, Jin W, Zhang X (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117:445–456

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S (2002) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12:711–718

    Article  PubMed  CAS  Google Scholar 

  • Moscone EA, Matzke MA, Matzke AJ (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236

    Article  CAS  Google Scholar 

  • Murata M (2002) Telomeres and centromeres in plants. Curr Genet 3:527–538

    CAS  Google Scholar 

  • Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res 13:195–203

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003a) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225

    PubMed  CAS  Google Scholar 

  • Nagaki K, Song J, Stuper RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J (2003b) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770

    PubMed  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J (2005) Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol 22:845–855

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2009a) A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco. Chromosoma 118:249–257

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Walling J, Hirsch C, Jiang J, Murata M (2009b) Structure and evolution of plant centromeres. In: Ugarkovic D (ed) Centromere, progress in molecular and subcellular biology. Springer, Berlin, pp 153–179

    Google Scholar 

  • Pelissier T, Tutois S, Deragon JM, Tourmente S, Genestier S, Picard G (1995) Athila, a new retroelement from Arabidopsis thaliana. Plant Mol Biol 29:441–452

    Article  PubMed  CAS  Google Scholar 

  • Petit M, Lim KY, Julio E, Poncet C, Borne FDD, Kovarik A, Leitch AR, Grandbastien M-A, Mhiri C (2007) Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Genet Genomics 278:1–15

    Article  PubMed  CAS  Google Scholar 

  • Suzuki G, Watanabe M, Toriyama K, Isogai A, Hinata K (1997) Direct cloning of the Brassica S locus by using a P1-derived artificial chromosome (PAC) vector. Gene 199:133–137

    Article  PubMed  CAS  Google Scholar 

  • Tek AL, Kashihara K, Murata M, Nagaki K (2010) Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon. Chromosome Res 18:337–347

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Wolfgruber TK, Sharma A, Schneider KL, Albert PS, Koo D-H, Shi J, Gao Z, Han F, Lee H, Xu R, Allison J, Birchler JA, Jiang J, Dawe RK, Presting GG (2009) Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. PLoS Genet 5:e1000743

    Article  PubMed  Google Scholar 

  • Wu F, Tanksley SD (2010) Chromosomal evolution in the plant family Solanaceae. BMC Genomics 11:182

    Article  PubMed  Google Scholar 

  • Yan H, Ito H, Nobuta K, Ouyang S, Jin W, Tian S, Lu C, Venu RC, Wang GL, Green PJ, Wing RA, Buell CR, Meyers BC, Jiang J (2006) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18:2123–2133

    Article  PubMed  CAS  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for the Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN) and a grant from the Inamori Foundation (#200835).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Nagaki.

Additional information

Responsible Editor: Pat Heslop-Harrison.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Figure S1

Multi-color FISH on SR1 chromosomes. DAPI-stained N. tabacum SR1 chromosomes (b), NtBAC#1 (c), #2 (d), #9 (e), and #10 (f) FISH signals, and merged image of b (white), c (red), d (yellow), e (green), and f (blue) (a). Scale bar, 10 μm (JPEG 48 kb)

High resolution (TIFF 6585 kb)

Figure S2

Immunostaining and FISH. DAPI-stained N. tabacum chromosomes (b, f and j), immunosignals of anti-NtCENH3 antibody (c, g and k), and NtBAC#2 (d), #9 (h), and #10 (l) FISH signals and merged image of bd (a), fh (e), and jl (i). Scale bar, 10 μm (JPEG 95 kb)

High resolution (TIFF 10971 kb)

Table S1

Primers used in this study (DOC 115 kb)

Table S2

Tobacco BAC clones showing centromeric FISH signals (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaki, K., Shibata, F., Suzuki, G. et al. Coexistence of NtCENH3 and two retrotransposons in tobacco centromeres. Chromosome Res 19, 591–605 (2011). https://doi.org/10.1007/s10577-011-9219-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-011-9219-2

Keywords

Navigation