Skip to main content
Log in

A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Centromeres play an important role in segregating chromosomes into daughter cells, and centromeric DNA assembles specific proteins to form a complex referred to as the kinetochore. Among these proteins, centromere-specific histone H3 (CENH3) is one of the most characterized and found to be located only on active centromeres. We isolated four different CENH3-coding complementary DNAs (cDNAs), two from Nicotiana tabaccum and one each from the ancestral diploid species, Nicotiana sylvestris and Nicotiana tomentosiformis and raised an antibody against N-terminal amino acid sequences deduced from the cDNAs. Immunostaining with the antibody revealed the preferential centromere localization, indicating that the cDNAs cloned in this study encode authentic tobacco CENH3. A tobacco centromeric DNA sequence (Nt2-7) was also identified by chromatin immunoprecipitation cloning using the antibody.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A 95:13073–13078

    Article  PubMed  CAS  Google Scholar 

  • Black BE, Foltz DR, Chakravarthy S, Luger K, Woods VL Jr., Cleveland DW (2004) Structural determinants for generating centromeric chromatin. Nature 430:578–582

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    Article  PubMed  CAS  Google Scholar 

  • Clarke L, Carbon J (1983) Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature 305:23–28

    Article  PubMed  CAS  Google Scholar 

  • Cooper JL, Henikoff S (2004) Adaptive evolution of the histone fold domain in centromeric histones. Mol Biol Evol 21:1717–1718

    Article  Google Scholar 

  • Dawe RK, Reed LM, Yu HG, Muszynski MG, Hiatt EN (1999) A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11:1227–1238

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A 95:8135–8140

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321

    Article  PubMed  CAS  Google Scholar 

  • Foster E, Hattori J, Zhang P, Labbe H, Martin-Heller T, Li-Pook-Than J, Ouellet T, Malik K, Miki B (2003) The new RENT family of repetitive elements in Nicotiana species harbors gene regulatory elements related to the tCUP cryptic promoter. Genome 46:146–155

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H (2002) Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res 9:117–121

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Gill BS, Wang GL, Ronald PC, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci U S A 92:4487–4491

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Matsumoto T, Koiwai A, Mizusaki S, Nishida K, Noguchi M, Tamaki E (1972) Liquid suspension culture of tobacco cells. Proc. IV IFS: Ferment. Technol.:680–695

  • Lee H, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci U S A 102:11793–11798

    Article  PubMed  CAS  Google Scholar 

  • Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schuberta I (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18:2442–2451

    Article  Google Scholar 

  • Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298

    PubMed  CAS  Google Scholar 

  • Malik HS, Vermaak D, Henikoff S (2002) Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. Proc Natl Acad Sci U S A 99:1449–1454

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Ogura Y, Motoyoshi F (1994) Centromeric repetitive sequences in Arabidopsis thaliana. Jpn. J Genet 69:361–370

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res 13:195–203

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Tsujimoto H, Sasakuma T (1998) A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions. Chromosome Res 6:295–302

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225

    PubMed  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2005) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:1886–1893

    Article  PubMed  CAS  Google Scholar 

  • Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K (2004) Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells 9:105–120

    Article  PubMed  CAS  Google Scholar 

  • Ogura Y, Shibata F, Sato H, Murata M (2004) Characterization of a CENP-C homolog in Arabidopsis thaliana. Genes Genet Syst 79:139–144

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Cheeseman I, Hori T, Okawa K, McLeod I, Yates JR, Desai A, Fukagawa T (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8:446–457

    Article  PubMed  CAS  Google Scholar 

  • Pidoux AL, Allshire RC (2000) Centromeres: getting a grip of chromosomes. Curr Opin Cell Biol 12:308–319

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Shibata F, Murata M (2005) Characterization of a Mis12 homologue in Arabidopsis thaliana. Chromosome Res 13:827–834

    Article  PubMed  CAS  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis genome initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Vermaak D, Hayden HS, Henikoff S (2002) Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 22:7553–7561

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE, Cooke CA, Bourassa S, Vafa O, Sullivan BA, Stetten G, Gimelli G, Warburton D, Tyler-Smith C, Sullivan KF, Poirier GG, Earnshaw WC (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904

    Article  PubMed  CAS  Google Scholar 

  • Wevrick R, Willard HF (1989) Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci U S A 86:9394–9398

    Article  PubMed  CAS  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology in Japan (#18770007). Seeds of N. sylvestris and N. tomentosiformis were kindly provided by Japan Tobacco Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Nagaki.

Additional information

Communicated by I. Schubert

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Alignment of CENH3 cDNAs from Nicotiana species. CENH3 cDNAs isolated in this study (NtCENH3-1 and -2, NsCENH3 and NtoCENH3) and found in the gene index project database (BP526496) were aligned. Start and stop codons are marked by red and blue boxes, respectively. Primer positions and SalI and AfeI sites used for CAPS analyses are indicated by arrows and green boxes, respectively. (GIF 363 KB)

Figure S2

Alignment of CENH3s from plants. CENH3s identified in this study (NtCENH3-1 and -2, NsCENH3 and NtoCENH3) were aligned with HTR12 (Arabidopsis), LnCENH3 (Luzula), OsCENH3 (rice), MaizeCENH3, SoCENH3-1 (sugarcane CA127217), SoCENH3-2 (sugarcane TC19006), and OsHistoneH3 (canonical histone H3 from rice). The red box indicates the peptide sequence used to raise the anti-NtCENH3 antibody. (GIF 287 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaki, K., Kashihara, K. & Murata, M. A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco. Chromosoma 118, 249–257 (2009). https://doi.org/10.1007/s00412-008-0193-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-008-0193-1

Keywords

Navigation