Skip to main content
Log in

Diamonds in the Attawapiskat area of the Superior craton (Canada): evidence for a major diamond-forming event younger than 1.1 Ga

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Here, we compare nitrogen aggregation characteristics and carbon isotopic compositions in diamonds from Mesoproterozoic (T1) and Jurassic (U2) kimberlites in the Attawapiskat area—the first diamond-producing area on the Superior craton. The T1 kimberlite sampled diamonds from the lithospheric mantle at 1.1 Ga, at the same time as the major Midcontinent Rift event. These diamonds have a narrow range in δ13C (mode of −3.4 ‰), with compositions that overlap other diamond localities on the Superior craton. Some diamond destruction must have occurred during the Mesoproterozoic in response to the thermal impact of the Midcontinent Rift—the associated elevated geotherm caused a narrow diamond window (<30 km) close to the base of the lithosphere, compared to a wide diamond window of ~85 km following thermal relaxation (sampled by Jurassic kimberlites, such as U2). T1 diamonds have highly aggregated nitrogen, possibly due to the thermal effect of the rift. Diamond-favourable conditions were re-established in the lithospheric mantle after the thermal impact of the Midcontinent Rift dissipated. The poorly aggregated nature of nitrogen in U2 diamonds—compared to highly aggregated nitrogen in diamonds from T1—indicates that renewed diamond formation must have occurred only after the thermal impact of the Midcontinent Rift at 1.1 Ga had subsided and that these newly formed diamonds were subsequently sampled by Jurassic kimberlites. The overall δ13C distribution for U2 diamonds is distinct to T1 and other Superior diamonds, further suggesting that U2 diamonds are not related to the older pre-rift diamonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Armstrong JP, Fitzgerald CE, Kjarsgaard BA, Heaman L, Tappe S (2012) Kimberlites of the Coronation Gulf Field, Northern Slave Craton, Nunavut Canada. In: 10th International Kimberlite Conference Extended Abstracts, vol 170

  • Beakhouse GP (1991) Winnipeg River subprovince. In: Thurston PC, Williams HR, Sutcliffe RH, Stott GM (eds) Geology of Ontario, special volume 4, part 1, pp 279–301. Ontario Geological Survey

  • Bell K, Blenkinsop J (1987) Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology 15(2):99–102

    Article  Google Scholar 

  • Berman RG, Sanborn-Barrie M, Stern RA, Carson CJ (2005) Tectonometamorphism at ca. 2.35 and 1.85 Ga in the Rae Domain, Western Churchill Province, Nunavut, Canada: insights from structural, metamorphic and in situ geochronological analysis of the Southwestern Committee Bay Belt. Can Mineral 43:409–442

    Article  Google Scholar 

  • Blank JG, Delaney JR, Des Marais DJ (1993) The concentration and isotopic composition of carbon in basaltic glasses from the Juan de Fuca Ridge, Pacific Ocean. Geochim Cosmochim Acta 57:875

    Article  Google Scholar 

  • Böhm CO, Heaman LM, Creaser RA, Crockery MT (2000) Discovery of pre-3.5 Ga exotic crust at the northwestern Superior Province margin, Manitoba. Geology 28(1):75–78

    Article  Google Scholar 

  • Boyd SR, Mattey DP, Pillinger CI, Milledge HJ, Mendelssohn M, Seal M (1987) Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. Earth Planet Sci Lett 86:341–353

    Article  Google Scholar 

  • Boyd SR, Kiflawi I, Woods GS (1994) The relationship between infrared absorption and the A defect concentration in diamond. Philos Mag B 69(6):1149–1153

    Article  Google Scholar 

  • Boyd SR, Kiflawi I, Woods GS (1995) Infrared absorption by the B nitrogen aggregate in diamond. Philos Mag B 72(3):351–361

    Article  Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49(4):797–821

    Article  Google Scholar 

  • Bursill LA, Glaisher RW (1985) Aggregation and dissolution of small and extended defect structures in Type Ia diamond. Am Mineral 70(5–6):608–618

    Google Scholar 

  • Cartigny P (2005) Stable isotopes and the origin of diamond. Elements 1:79–84

    Article  Google Scholar 

  • Cartigny P, Harris JW, Javoy M (2001) Diamond genesis, mantle fractionations and mantle nitrogen content: a study of δ13C–N concentrations in diamonds. Earth Planet Sci Lett 185:85–98

    Article  Google Scholar 

  • Coggon RM, Teagle DAH, Cooper MJ, Hayes TEF, Green DRH (2006) Data report: compositions of calcium carbonate veins from superfast spreading rate crust, ODP Leg 206. Proc ODP Sci Results 206:1–6

    Google Scholar 

  • Corfu F, Wood J (1986) U-Pb zircon ages in supracrustal and plutonic rocks; North Spirit Lake area, northwestern Ontario. Can J Earth Sci 23:967–977

    Article  Google Scholar 

  • David J, Parent M, Stevenson R, Nadeau P, Godin L (2002) The Porpoise Cove supracrustal sequence, Inukjuak area: a unique example of Paleoarchean crust (ca. 3.8 Ga) in the Superior Province. Ministère des Resources Naturelles de Québec, DV, 2002-10

  • Day HW (2012) A revised diamond-graphite transition curve. Am Mineral 97:52–62

    Article  Google Scholar 

  • de Stefano A, Kopylova MG, Cartigny P, Afanasiev V (2009) Diamonds and eclogites of the Jericho kimberlite (Northern Canada). Contrib Miner Petrol 158(3):295–315

    Article  Google Scholar 

  • Deines P (1980) The carbon isotopic composition of diamonds: relationship to diamond shape, colour, occurrence and vapour deposition. Geochim Cosmochim Acta 44:943–961

    Article  Google Scholar 

  • Deines P, Gold DP (1973) The isotopic composition of carbonatite and kimberlite carbonate and their bearing on the isotopic composition of deep-seated carbon. Geochim Cosmochim Acta 37:1709–1733

    Article  Google Scholar 

  • Deines P, Harris JW, Spear PM, Gurney JJ (1989) Nitrogen and 13C content of Finsch and Premier diamonds and their implications. Geochim Cosmochim Acta 53:1367–1378

    Article  Google Scholar 

  • Deines P, Viljoen F, Harris JW (2001) Implications of the carbon isotope and mineral inclusion record for the formation of diamonds in the mantle underlying a mobile belt: Venetia, South Africa. Geochim Cosmochim Acta 65:813–838

    Article  Google Scholar 

  • Des Marais DJ, Moore JG (1984) Carbon and its isotopes in mid-oceanic basaltic glasses. Earth and Planetary Science Letters 62:43–57

    Article  Google Scholar 

  • Doig R (1970) An alkaline rock province linking Europe and North America. Can J Earth Sci 7(1):22–26

    Article  Google Scholar 

  • Eaton DW, Darbyshire F (2010) Lithospheric architecture and tectonic evolution of the Hudson Bay region. Tectonophysics 480:1–22

    Article  Google Scholar 

  • Eggler DH (1978) The effect of CO2 upon partial melting of peridotite in the system Na2O–CaO–Al2O3–MgO–SiO2–CO2 to 35kbar, with an analysis of melting in a peridotite-H2O–CO2 system. Am J Sci 278:305–343

    Article  Google Scholar 

  • Evans T, Qi Z (1982) The kinetics of aggregation of nitrogen in diamond. Proc R Soc Lond Ser A 361:109–127

    Google Scholar 

  • Evans T, Kiflawi I, Luyten W, van Tendeloo G, Woods GS (1995) Conversion of platelets into dislocation loops and voidite formation in Type IaB diamonds. Proc R Soc Lond Ser A 449:295–313

    Article  Google Scholar 

  • Exley RA, Mattey DP, Clague DA, Pillinger CT (1986) Carbon isotope systematics of a mantle “hot spot”: a comparison of Loihi Seamount and MORB glasses. Earth Planet Sci Lett 78:189–199

    Article  Google Scholar 

  • Graham S, Lambert DD, Shee SR, Smith CB, Reeves S (1999) Re–Os isotopic evidence for Archean lithospheric mantle beneath the Kimberley block, Western Australia. Geology 27(5):431–434

    Article  Google Scholar 

  • Grütter HS (2009) Pyroxene xenocryst geotherms: techniques and application. Lithos 112S:1167–1178

    Article  Google Scholar 

  • Haggerty SE (1999) A diamond trilogy: superplumes, supercontinents, and supernovae. Science 285:851–860

    Article  Google Scholar 

  • Halls HC (1978) The late Precambrian Central North American Rift System—a survey of recent geological and geophysical investigations. In: Ramberg IB, Neumann ER (eds) Tectonics and geophysics of continental rifts. Reidel, Dordrecht, pp 111–123

    Chapter  Google Scholar 

  • Harte B, Fitzsimons ICW, Harris JW, Otter ML (1999) Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province, S. Africa. Mineral Mag 63(6):829–856

    Article  Google Scholar 

  • Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307:59–70

    Article  Google Scholar 

  • Hattori K, Hamilton S (2008) Geochemistry of peat over kimberlites in the Attawapiskat area, James Bay Lowlands, northern Canada. Appl Geochem 23:3767–3782

    Article  Google Scholar 

  • Heaman LM, Kjarsgaard BA (2000) Timing of eastern North American kimberlite magmatism: continental extension of the Great Meteor hotspot track? Earth Planet Sci Lett 178:253–268

    Article  Google Scholar 

  • Heaman LM, Kjarsgaard BA, Creaser RA (2004) The temporal evolution of North American kimberlites. Lithos 76:377–397

    Article  Google Scholar 

  • Hoefs J, Frey M (1976) The isotopic composition of carbonaceous matter in a metamorphic profile from the Swiss Alps. Geochim Cosmochim Acta 40:945

    Article  Google Scholar 

  • Howell D, O’Neill CJ, Grant KJ, Griffin WL, O’Reilly SY, Pearson NJ, Stern RA, Stachel T (2012) Platelet development in cuboid diamonds: insights from micro-FTIR mapping. Contrib Miner Petrol 164:1011–1025

    Article  Google Scholar 

  • Huizenga JM, Crossingham A, Viljoen F (2012) Diamond precipitation from ascending reduced fluids in the Kaapvaal lithosphere: thermodynamic constraints. CR Geosci 344:67–76

    Article  Google Scholar 

  • Humble P (1982) The structure and mechanism of formation of platelets in natural type Ia diamond. Proc R Soc Lond Ser A 381:65–81

    Article  Google Scholar 

  • Hunt LC, Stachel T, McCandless TE, Armstrong J, Muehlenbachs K (2012) Diamonds and their mineral inclusions from the Renard kimberlites in Quebec. Lithos 142–143:267–284

    Article  Google Scholar 

  • Januszczak N, Seller MH, Kurszlaukis S, Murphy C, Delgaty J, Tappe S, Ali K, Zhu J, Ellemers P (2013) A multidisciplinary approach to the Attawapiskat kimberlite field, Canada: accelerating the discovery-to-production pipeline. In: Proceedings of the 10th International Kimberlite Conference

  • Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57(1–2):41–62

    Article  Google Scholar 

  • Kiflawi I, Bruley J (2000) The nitrogen aggregation sequence and the formation of voidites in diamond. Diam Relat Mater 9:87–93

    Article  Google Scholar 

  • Kirkley MB, Gurney JJ, Otter ML, Hill SJ, Daniels LR (1991) The application of C isotope measurements to the identification of the sources of C in diamonds: a review. Appl Geochem 6:477–494

    Article  Google Scholar 

  • Klewin KW, Berg JH (1991) Geochemistry of the Mamainse Point volcanics, Ontario: petrogenesis and continental rift evolution. J Geophys Res 96:457–474

    Article  Google Scholar 

  • Kong JM., Boucher DR, Scott-Smith BH (1999) Exploration and geology of the Attawapiskat kimberlites, James Bay Lowlands, Northern Ontario, Canada. In: Extended abstracts of the 7th International Kimberlite Conference, pp 446–448

  • Koster van Groos AF (1975) The effect of high CO2 pressures on alkalic rock and its bearing on the formation of alkalic ultrabasic rocks and the associated carbonatites. Am J Sci 275:163–185

    Article  Google Scholar 

  • Langford FF, Morin JA (1976) The development of the Superior Province of Northwestern Ontario by merging Island Arcs. Am J Sci 270:1023–1034

    Article  Google Scholar 

  • Leahy K, Taylor WR (1997) The influence of the Glennie domain deep structure on the diamonds in Saskatchewan kimberlites. Russ Geol Geophys 38(2):481–491

    Google Scholar 

  • LeCheminant AN, Heaman LM (1989) Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening. Earth Planet Sci Lett 96:38–48

    Article  Google Scholar 

  • Luguet A, Jaques AL, Pearson DG, Smith CB, Bulanova GP, Roffey SL, Rayner MJ, Lorand J-P (2009) An integrated petrological, geochemical and Re–Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. In: Lithos, 112S—proceedings of the 9th International Kimberlite Conference, pp 1096–1108

  • Marty B, Zimmermann L (1999) Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition. Geochim Cosmochim Acta 63(21):3619–3633

    Article  Google Scholar 

  • Mather KA, Pearson DG, McKenzie D, Kjarsgaard BA, Priestley K (2011) Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos 125:729–742

    Article  Google Scholar 

  • Mattey DP, Carr RH, Wright IP, Pillinger CT (1984) Carbon isotopes in submarine basalts. Earth Planet Sci Lett 70:196–206

    Article  Google Scholar 

  • McCandless TE, Gurney JJ (1997) Diamond eclogites: comparison with carbonaceous chondrites, carbonaecous shales, and microbial carbon-enriched MORB. Russian geology and geophysics, special issue: proceedings of the 6th International Kimberlite Conference, vol 2, pp 394–404

  • Miller CE, Kopylova MG, Ryder J (2012) Vanished diamondiferous cratonic root beneath the Southern Superior province: evidence from diamond inclusions in the Wawa metaconglomerate. Contrib Miner Petrol 164(4):697–714

    Article  Google Scholar 

  • Nickel KG, Green DH (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet Sci Lett 73:158–170

    Article  Google Scholar 

  • Nimis P, Grütter H (2009) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib Miner Petrol 159(3):411–427

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Miner Petrol 139:541–554

    Article  Google Scholar 

  • Nisbet EG, Mattey DP, Lowry D (1994) Can diamonds be dead bacteria? Nature 367:694

    Article  Google Scholar 

  • Ojakangas RW, Morey GB, Green JC (2001) The Mesoproterozoic Midcontinent Rift system, Lake Superior Region, USA. Sed Geol 141–142:421–442

    Article  Google Scholar 

  • Paces JB, Bell K (1989) Non-depleted sub-continental mantle beneath the Superior Province of the Canadian Shield: Nd–Sr isotopic and trace element evidence from Midcontinent Rift basalts. Geochim Cosmochim Acta 53:2023–2035

    Article  Google Scholar 

  • Palot M, Pearson DG, Stern RA, Stachel T, Harris JW (2013) Multiple growth events, processes and fluid sources involved in diamond genesis: a micro-analytical study of sulphide-bearing diamonds from the Finsch mine, RSA. Geochim Cosmochim Acta 106:51–70

    Article  Google Scholar 

  • Pearson DG, Meyer HOA, Boyd FR, Shirey SB, Carlson RW (1997) Re–Os isotope evidence for late Archaean stabilisation of a thick lithospheric mantle keel beneath the Kirkland Lake area, Superior Province, Canada. Further evidence for long-term crust-mantle coupling. Russian geology and geophysics, special issue: proceedings of the 6th International Kimberlite Conference, vol 2, pp 427–429

  • Pearson DG, Shirey SB, Harris JW, Carlson RW (1998) Sulphide inclusions in diamonds from the Koffiefontein kimberlite, S Africa: constraints on diamond ages and mantle Re–Os systematics. Earth Planet Sci Lett 160:311–326

    Article  Google Scholar 

  • Percival JA, Sanborn-Barrie M, Skulski T, Stott GM, Helmstaedt H, White DJ (2006) Tectonic evolution of the western Superior Province from NATMAP and Lithoprobe studies. Can J Earth Sci 43:1085–1117

    Article  Google Scholar 

  • Pineau F, Javoy M, Allègre CJ (1973) Etude systématique des isotopes de l’oxygène, du carbone et du strontium dans les carbonatites. Geochim Cosmochim Acta 37:2363–2377

    Article  Google Scholar 

  • Richardson SH (1986) Latter-day origin of diamonds of eclogitic paragenesis. Nature 322:623–626

    Article  Google Scholar 

  • Richardson SH, Harris JW, Gurney JJ (1993) Three generations of diamond from old continental mantle. Nature 366:256–258

    Article  Google Scholar 

  • Richardson SH, Pöml PF, Shirey SB, Harris JW (2009) Age and origin of peridotitic diamonds from Venetia, Limpopo Belt, Kaapvaal-Zimbabwe Craton. In: Lithos, 112S—proceedings of the 9th International Kimberlite Conference, pp 785–792

  • Rukhlov AS, Bell K (2010) Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution. Mineral Petrol 98(1–4):11–54

    Article  Google Scholar 

  • Sage RP (2000) Kimberlites of the Attawapiskat area, James Bay Lowlands, northern Ontario. Ont Geol Surv Open File Rep 6019(341):341

    Google Scholar 

  • Schaeffer AJ, Lebedev S (2013) Global shear speed structure of the upper mantle. Geophys J Int 194(1):417–449

    Google Scholar 

  • Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambr Res 106:117–134

    Article  Google Scholar 

  • Sheppard SMF, Dawson JB (1975) Hydrogen, carbon and oxygen isotope studies of megacryst and matrix minerals from Lesothan and South African kimberlites. In: Ahrens L, Urey HC, Runcorn SK (eds) Physics and chemistry of the Earth, vol 6. Pergamon Press, Oxford, pp 747–763

    Chapter  Google Scholar 

  • Shirey SB, Richardson SH (2011) Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333:434–436

    Article  Google Scholar 

  • Shirey SB, Klewin KW, Berg JH, Carlson RW (1994) Temporal changes in the sources of flood basalts: isotopic and trace element evidence from the 1100 Ma old Keweenawan Mamainse Point Formation, Ontario, Canada. Geochim Cosmochim Acta 58(20):4475–4490

    Article  Google Scholar 

  • Skulski T, Corkery MT, Stone D, Whalen JB, Stern RA (2000) Geological and geochronological investigations in the Stull Lake—Edmund Lake greenstone belt and granitoid rocks of the northwestern Superior Province. Report of activities 2000, Manitoba Industry, Trade and Mines, pp 117–128. Manitoba Geological Survey

  • Smart KA, Chacko T, Stachel T, Muehlenbachs K, Stern RA, Heaman LM (2011) Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: a δ13C–N study of eclogite-hosted diamonds from the Jericho kimberlite. Geochim Cosmochim Acta 75:6027–6047

    Article  Google Scholar 

  • Smit KV, Shirey SB, Richardson SH, le Roex AP, Gurney JJ (2010) Re–Os isotopic composition of peridotitic sulphide inclusions in diamonds from Ellendale, Australia: age constraints on Kimberley cratonic lithosphere. Geochim Cosmochim Acta 74(11):3292–3306

    Article  Google Scholar 

  • Smit KV, Pearson GP, Stachel T, Seller M. Peridotite xenoliths from Attawapiskat, Canada: Mesoproterozoic reworking of Palaeoarchaean lithospheric mantle beneath the Northern Superior Superterrane (in preparation )

  • Snyder GA, Taylor LA, Jerde EA, Clayton RN, Mayeda TK, Deines P, Rossman GR, Sobolev NV (1995) Archean mantle heterogeneity and origin of diamondiferous eclogites, Siberia: evidence from stable isotopes and hydroxyl in garnet. Am Mineral 80:799

    Google Scholar 

  • Sobolev VS, Sobolev NV (1980) New proof on very deep subsidence of eclogitised crustal rocks. Dokl Akad Nauk SSSR 250:683–685

    Google Scholar 

  • Sobolev VN, Taylor LA, Snyder GA (1994) Diamondiferous eclogites from the Udachnaya kimberlite pipe, Yakutia. Int Geol Rev 36:42

    Article  Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34(1–2):5–32

    Article  Google Scholar 

  • Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos 77:1–20

    Article  Google Scholar 

  • Stachel T, Banas A, Muehlenbachs K, Kurszlaukis S, Walker EC (2006) Archean diamonds from Wawa (Canada): samples from deep cratonic roots predating cratonization of the Superior Province. Contrib Miner Petrol 151:737–750

    Article  Google Scholar 

  • Stachel T, Harris JW, Muehlenbachs K (2009) Sources of carbon in inclusion-bearing diamonds. In: Lithos, 112S—proceedings of the 9th International Kimberlite Conference, pp 625–637

  • Stevenson RK (1995) Crust and mantle evolution in the late Archaean: evidence from a Sm–Nd isotopic study of the North Spirit Lake greenstone belt, northwestern Ontario. Geol Soc Am Bull 107:1458–1467

    Article  Google Scholar 

  • Strauss H (1986) Carbon and sulphur isotopes in Precambrian sediments from the Canadian Shield. Geochim Cosmochim Acta 50:2653–2662

    Article  Google Scholar 

  • Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrbuch Mineralogie Abhandlungen 172:381–408

    Google Scholar 

  • Taylor WR, Jaques AL, Ridd M (1990) Nitrogen-defect aggregation characteristics of some Australasian diamonds: time–temperature constraints on the source regions of pipe and alluvial diamonds. Am Mineral 75:1290–1310

    Google Scholar 

  • Thomas RD (2004) Spider #1 and #3 projects (James Bay Joint Venture), James Bay, Ontario. Technical report prepared for Spider Resources and KWG Resources, p 76

  • Thomassot E, Cartigny P, Harris JW, Viljoen KS (2007) Methane-related diamond crystallisation in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet Sci Lett 257:362–371

    Article  Google Scholar 

  • Thurston PC, Osmani IA, Stone D (1991) Northwestern Superior Province: review and terrane analysis. In: Thurston PC, Williams HR, Sutcliffe RH, Stott GM (eds) Geology of Ontario, special volume 4, part 1, pp 81–144. Ontario Geological Survey

  • Tomlinson KY, Stott GM, Percival JA, Stone D (2004) Basement terrane correlations and crustal recycling in the western Superior Province: Nd isotopic character of granitoid and felsic volcanic rocks in the Wabigoon subprovince, N. Ontario, Canada. Precambr Res 132:245–274

    Article  Google Scholar 

  • Tyler I, Page R (1996) Palaeoproterozoic deformation, metamorphism and igneous intrusion in the central zone of the Lamboo Complex, Halls Creek Orogen. Geol Soc Aust Abstr 41:450

    Google Scholar 

  • van Schmus WR, Hinze WJ (1985) The Midcontinent Rift system. Annu Rev Earth Planet Sci 13:345–383

    Article  Google Scholar 

  • Webb KJ, Smith BHS, Paul JL, Hetman CM (2004) Geology of the Victor Kimberlite, Attawapiskat, Northern Ontario, Canada: cross-cutting and nested craters. Lithos 76:29–50

    Article  Google Scholar 

  • Wendlandt RF, Mysen BO (1980) Melting phase relations of natural peridotite + CO2 as a function of degree of partial melting at 15 and 30 kbar. Am Mineral 65:37–44

    Google Scholar 

  • Westerlund K, Shirey S, Richardson S, Carlson R, Gurney J, Harris J (2006) A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re–Os isotope systematics. Contrib Miner Petrol 152:275–294

    Article  Google Scholar 

  • White WS (1972) Keweenawan flood basalts and continental rifting. Geol Assoc Am Abstr Programs 4:732–734

    Google Scholar 

  • Wiggers de Vries DF, Bulanova GP, de Corte K, Pearson DG, Craven JA, Davies GR (2013) Micron-scale couple carbon isotope and nitrogen abundance variations in diamonds: evidence for episodic diamond formation beneath the Siberian Craton. Geochim Cosmochim Acta 100:176–199

    Article  Google Scholar 

  • Wold RJ, Hinze WJ (1982) Geology and tectonics of the Lake Superior basin. Geol Assoc Am Mem 156:280

    Google Scholar 

  • Woods G (1986) Platelets and the infrared absorption of type Ia diamonds. Proc R Soc A407:219–238

    Article  Google Scholar 

  • Wyllie PJ, Huang W-L (1976) Carbonation and melting reactions in the system CaO–MgO–SiO2–CO2 at mantle pressures with geophysical and petrological applications. Contrib Miner Petrol 54:79–107

    Article  Google Scholar 

Download references

Acknowledgments

Chuck Fipke and Chad Ulansky from Metalex Ventures are thanked for generously donating diamonds for this study. Herman Grütter is thanked for valuable discussions and for his help in obtaining the samples. We thank Pierre Cartigny, an anonymous reviewer, and the editor Jochen Hoefs for their constructive reviews that improved the manuscript. Funding from the GEM Diamonds program of the Geological Survey of Canada and a NSERC CRD grant with participation from De Beers Canada is gratefully acknowledged. T.S. receives additional funding through an NSERC Discovery Grant and the Canada Research Chairs program. The Canadian Centre for Isotopic Microanalysis (CCIM) was created through CFI and ASRIP grants to T.S. SIMS data relate to CCIM project P1202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Smit.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smit, K.V., Stachel, T. & Stern, R.A. Diamonds in the Attawapiskat area of the Superior craton (Canada): evidence for a major diamond-forming event younger than 1.1 Ga. Contrib Mineral Petrol 167, 962 (2014). https://doi.org/10.1007/s00410-013-0962-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-013-0962-6

Keywords

Navigation