Skip to main content
Log in

Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Carbonatites are known to range in age from the Archean through to the Recent, with an increasing abundance towards more recent times. Of the known 500 or so carbonatites, however, few have been precisely dated. In this paper, some new, precise U/Pb, Th/Pb as well as Pb/Pb dates from several carbonatite complexes from Europe and North America are presented and used to establish important reference points in defining mantle perturbations. Events at 2617, 1964, 583 and 382 Ma are now firmly established for the Fennoscandian Shield, while several distinct events of 2680 Ma, and between 1897–1881 and 1164–1083 Ma are documented for the Canadian Shield. Other, less well-defined, events in Canada include magmatism at 1770 Ma from Argor, 570 Ma from Manitou Islands, and an event at 360 Ma from the Canadian Cordillera. One carbonatite from the Ukrainian Shield (Chernigovka) has been precisely dated at 2074 Ma. Events from the Fennoscandian Shield also include carbonatitic magmatism at 1792 Ma from Halpanen, and between 386 and 377 Ma from Kola. Most of these events from quite distinct Archean cratons can be correlated with LIPs and associated mafic magmatism, such as flood basalts and regional dyke swarms, generally considered to be the result of plume magmatism and associated continental fragmentation. Few mafic events are associated with the post-orogenic shoshonitic magmatism at ca. 1800 Ma for the Fennoscandian Shield and the Devonian continental margin extension in the Canadian Cordillera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aaquist B (1982) Blue River carbonatites, British Columbia—Final Report. Assessment Report No. 10274, BC Min Energy Mines Petrol Res, p 30

  • Amelin Y (2005) Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago. Science 310:839–841

    Google Scholar 

  • Amelin Y, Davis WJ (2006) Isotopic analysis of lead in sub-nanogram quantities by TIMS using a Pb-202-Pb-205 spike. J Anal At Spectrom 21(10):1053–1061

    Google Scholar 

  • Amelin Y, Krot A (2007) Pb isotopic age of the Allende chondrules. Meteorit Planet Sci 42(7–8):1321–1335

    Google Scholar 

  • Amelin Y, Zaitsev AN (2002) Precise geochronology of phoscorites and carbonatites: the critical role of U- series disequilibrium in age interpretations. Geochim Cosmochim Acta 66(13):2399–2419

    Google Scholar 

  • Amelin Y, Lee DC, Halliday AN, Pidgeon RT (1999) Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399(6733):252–255

    Google Scholar 

  • Amelin Y, Lee DC, Halliday AN (2000) Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochim Cosmochim Acta 64(24):4205–4225

    Google Scholar 

  • Andersen T (1996) Sr, Nd and Pb isotopic data of the Alnö carbonatite complex. In: Abstract volume, 22nd Nordic Geological Winter Meeting, p 11

  • Andersson UB, Eklund O, Frojdo S, Konopelko D (2006) 1.8 Ga magmatism in the Fennoscandian Shield: lateral variations in subcontinental mantle enrichment. Lithos 86(1–2):110–136

    Google Scholar 

  • Arzamastsev AA, Arzamastseva LV, Belyatskii BV (1998) Alkaline volcanism of the initial phase of Paleozoic tectono-magmatic reactivation in northeastern Fennoscandia: geochemical features and petrologic consequences. Petrology 6(3):293–312

    Google Scholar 

  • Arzamastsev AA, Bea F, Arzamastseva LV, Montero P (2006) Proterozoic Gremyakha-Vyrmes polyphase massif, Kola Peninsula: an example of mixing basic and alkaline mantle melts. Petrology 14(4):361–389

    Google Scholar 

  • Bailey DK (1993) Carbonate magmas. J Geol Soc 150:637–651

    Google Scholar 

  • Bailey DK, Woolley AR (1995) Magnetic quiet periods and stable continental magmatism: can there be a plume dimension? In: Anderson DL, Hart SR, Hofmann AW (eds) Plume 2: Alfred Wegener conference, vol 3–95. Terra Nostra, Bonn, Rottach-Egern, Federal Republic of Germany, pp 15–19

    Google Scholar 

  • Balaganskaya E, Gogol O, Liferovich R, Delenitsin A, Sherstobitova G, Sherstenikova O (1999) Origin of clinopyroxenite, phoscorite and carbonatite of the Paleozoic Seblyavr massif, north-western Russia: evidence from Rb-Sr data. J Conf Abstr 4(1):350

    Google Scholar 

  • Basu AR, Puustinen K (1982) Nd isotopic study of the Siilinjarvi carbonatite complex, eastern Finland and evidence of early Proterozoic mantle enrichment. In: Braunstein J, Thomson, AF (eds) The Geological Society of America 95th annual meeting, vol 14 (7). Abstracts with Programs—Geological Society of America, New Orleans, LA, United States, p 440

  • Bayanova TB (2006) Baddeleyite: a promising geochronometer for alkaline and basic magmatism. Petrology 14(2):187–200

    Google Scholar 

  • Bayanova TB, Kirnarskii YM, Levkovich NV (1997) U-Pb dating of baddeleyite from Kovdor massif. Doklady Akademii Nauk 356(4):509–511

    Google Scholar 

  • Bea F, Arzamastsev A, Montero P, Arzamastseva L (2001) Anomalous alkaline rocks of Soustov, Kola: evidence of mantle-derived metasomatic fluids affecting crustal materials. Contrib Mineral Petrol 140(5):554–566

    Google Scholar 

  • Beard AD, Downes H, Vetrin V, Kempton PD, Maluski H (1996) Petrogenesis of Devonian lamprophyre and carbonatite minor intrusions, Kandalaksha Gulf (Kola Peninsula, Russia). Lithos 39(1–2):93–119

    Google Scholar 

  • Beckinsale RD, Gale NH (1969) A reappraisal of the decay constants and branching ratio of 40 K. Earth Planet Sci Lett 6(4):289–294

    Google Scholar 

  • Bedard LP, Chown EH (1992) The Dolodau dykes, Canada—an example of an Archean carbonatite. Mineral Petrol 46(2):109–121

    Google Scholar 

  • Bell K (1989) Carbonatites: genesis and evolution. Unwin Hyman, London, United Kingdom

    Google Scholar 

  • Bell K (2001) Carbonatites: relationships to mantle-plume activity. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time, vol 352, pp 267–290

  • Bell K, Blenkinsop J (1980) Ages and initial 87Sr/86Sr ratios from alkalic complexes of Ontario. In: Pye EG (ed) Geoscience Research Grant Program, Summary of Research 1979–1980, vol 93, pp 16–23

  • Bell K, Blenkinsop J (1987a) Archean depleted mantle—evidence from Nd and Sr initial isotopic-ratios of carbonatites. Geochim Cosmochim Acta 51(2):291–298

    Google Scholar 

  • Bell K, Blenkinsop J (1987b) Nd and Sr isotopic compositions of East African Carbonatites—implications for mantle heterogeneity. Geology 15(2):99–102

    Google Scholar 

  • Bell K, Blenkinsop J (1989) Neodymium and strontium isotope geochemistry of carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, United Kingdom, London, pp 278–300

    Google Scholar 

  • Bell K, Keller J (1995) Carbonatite volcanism. In: IAVCEI Proceedings in Volcanology, vol 4. Springer- Verlag, pp 210

  • Bell K, Rukhlov AS (2004) Carbonatites from the Kola Alkaline Province: origin, evolution and source characteristics. In: Zaitsev A, Wall F (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, vol 10. The Mineralogical Society, London, United Kingdom, pp 421–455

    Google Scholar 

  • Bell K, Simonetti A (1996) Carbonatite magmatism and plume activity: implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. J Petrol 37(6):1321–1339

    Google Scholar 

  • Bell K, Tilton GR (2001) Nd, Pb and Sr isotopic compositions of east African carbonatites: evidence for mantle mixing and plume inhomogeneity. J Petrol 42(10):1927–1945

    Google Scholar 

  • Bell K, Tilton GR (2002) Probing the mantle: the story from carbonatites. EOS, American Geophysical Union 83:276–277

    Google Scholar 

  • Bell K, Blenkinsop J, Cole TJS, Menagh DP (1982) Evidence from Sr isotopes for long-lived heterogeneities in the upper mantle. Nature 298(5871):251–253

    Google Scholar 

  • Bell K, Blenkinsop J, Kwon ST, Tilton GR, Sage RP (1987) Age and radiogenic isotopic systematics of the Borden carbonatite complex, Ontario, Canada. Can J Earth Sci 24(1):24–30

    Google Scholar 

  • Bell K, Dunworth EA, Bulakh AG, Ivanikov VV (1996) Alkaline rocks of the Turiy Peninsula, Russia, including type-locality turjaite and turjite: a review. Can Miner 34:265–280

    Google Scholar 

  • Belyaev K, Proskuryakov V, Korsakova M, Rabinovich YI, Zagorodnyy VG, Bylinskiy RV, Dolivo- Dobrovolskiy AV (1976) The tectonic pattern of the eastern part of the Baltic Shield. In: Kortman C (ed) Fault tectonics in the eastern part of the Baltic Shield. Helsinki, Finland, pp 35–48 Proceedings of a Finnish-Soviet symposium. Comm Sci Tech Coop Finl Sov Union

    Google Scholar 

  • Belyatsky BV, Savva EV, Tikhomirova M, Grosche G, Wall F (2001) Age and genesis of the Siilinjarvi Archean carbonatite complex in light of isotope data. In: Eleventh Annual V.M. Goldschmidt Conference, Hot Springs, Virginia, USA, Abstract #

  • Belyatzky B, Tikhomirova M (1993) Sm/Nd and Rb/Sr mineral isotope data on carbonatites from the Tiksheozero Massif. In: IAGOD international symposium on mineralization related to mafic and ultramafic rocks, with a special session on alkaline and carbonatitic magmatism and associated mineralization, vol 5, suppl 3. Orleans, France, p 5

  • Ben Othman D, Arndt NT, White WM, Jochum KP (1990) Geochemistry and age of Timiskaming alkali volcanics and the Otto syenite stock, Abitibi, Ontario. Can J Earth Sci 27(10):1304–1311

    Google Scholar 

  • Bennett G, Brown DD, George PT, Leahy EJ (1967) Operation Kapuskasing. Ontario Department of Mines, Miscellaneous Paper 10, pp 98

  • Bizimis M, Salters VJM, Dawson JB (2003) The brevity of carbonatite sources in the mantle: evidence from Hf isotopes. Contrib Mineral Petrol 145(3):281–300

    Google Scholar 

  • Bizzarro M, Simonetti A, Stevenson RK, David J (2002) Hf isotope evidence for a hidden mantle reservoir. Geology 30(9):771–774

    Google Scholar 

  • Bleeker W (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos 71(2–4):99–134

    Google Scholar 

  • Bleeker W, Ernst RE (2006) Short-lived mantle-generated magmatic events and their dyke swarms: The key unlocking Earth’s paleogeographic record back to 2.6 Ga. In: Hanski E, Mertanen S, Ramo TK, Vuollo J (eds) Dyke swarms—time markers of crustal evolution. A.A. Balkema, Rotterdam, pp 1–19

    Google Scholar 

  • Blichert-Toft J, Arndt NT, Ludden JN (1996) Precambrian alkaline magmatism. Lithos 37(2–3):97–111

    Google Scholar 

  • Bogatikov OA, Kononova VA, Nosova AA, Kondrashov IA (2007) Kimberlites and lamproites of the East European platform: petrology and geochemistry. Petrology 15(4):315–334

    Google Scholar 

  • Brooker RA (1998) The effect of CO2 saturation on immiscibility between silicate and carbonate liquids: an experimental study. J Petrol 39(11–12):1905–1915

    Google Scholar 

  • Brueckner HK, Rex DC (1980) K-Ar and Rb-Sr geochronology and Sr isotopic study of the Alnö alkaline complex, Northeastern Sweden. Lithos 13(2):111–119

    Google Scholar 

  • Buchan KL, Ernst RE, Hamilton MA, Mertanen S, Pesonen LJ, Elming SA (2001) Rodinia: the evidence from integrated palaeomagnetism and U-Pb geochronology. Precam Res 110(1–4):9–32

    Google Scholar 

  • Buchan KL, Goutier J, Hamilton MA, Ernst RE, Matthews WA (2007) Paleomagnetism, U-Pb geochronology and geochemistry of Lac Esprit and other dyke swarms, James Bay area, Quebec, and implications for Paleoproterozoic deformation of the superior Province. Can J Earth Sci 44(5):643–664

    Google Scholar 

  • Bulakh AG, Ivanikov VV (1984) The problems of mineralogy and petrology of carbonatites. Leningrad State University Press, Leningrad, USSR

    Google Scholar 

  • Bulakh AG, Ivanikov VV, Orlova MP (2004) Overview of carbonatite-phoscorite complexes of the Kola Alkaline Province in the context of a Scandinavian North Atlantic Alkaline Province. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, vol 10. The Mineralogical Society, London, United Kingdom, pp 1–37

    Google Scholar 

  • Cavell PA, Baadsgaard H (1986) Geochronology of the Big Spruce Lake alkaline intrusion. Can J Earth Sci 23(1):1–10

    Google Scholar 

  • Chen JH, Tilton GR, Mattinson JM, Vidal P (1978) Lead isotope systematics of mare basalt 75075. In: Merrill RB (ed) 9th Lunar and Planetary Science Conference, No. 9, Vol. l. Houston, Texas, United States, pp 509–521

  • Church SE, Tilton GR (1974) Lead isotope systematics of some Apollo 17 soils and some separated components from 76501. In: Gose WA (ed) Proceedings of the Fifth Lunar Science Conference Pergamon Press, New York, United States, pp 1389–1400

  • Cook FA (1985) Deep basement seismic-reflection profiling of the Purcell anticlinorium using a land air gun source. J Geophys Res—Solid Earth Planet 90(NB1):651–662

    Google Scholar 

  • Corfu F, Noble SR (1992) Genesis of the southern Abitibi greenstone belt, Superior Province, Canada—evidence from zircon Hf isotope analyses using a single filament technique. Geochim Cosmochim Acta 56(5):2081–2097

    Google Scholar 

  • Currie KL, Ferguson J (1971) Study of fenitization around alkaline carbonatite complex at Callander Bay, Ontario, Canada. Can J Earth Sci 8(5):498–502

    Google Scholar 

  • Dahlgren S (1994) Late Proterozoic and Carboniferous ultramafic magmatism of carbonatitic affinity in southern Norway. Lithos 31(3–4):141–154

    Google Scholar 

  • Dawson JB (1962) Sodium carbonate lavas from Oldoinyo Lengai, Tanzania. Nature 195(4846):1075–1076

    Google Scholar 

  • Dawson JB, Smith JV, Steele IM (1995) Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano, Oldoinyo Lengai, Tanzania. J Petrol 36(3):797–826

    Google Scholar 

  • de Ignacio C, Munoz M, Sagredo J, Fernandez-Santin S, Johansson A (2006) Isotope geochemistry and FOZO mantle component of the alkaline-carbonatitic association of Fuerteventura, Canary Islands, Spain. Chem Geol 232(3–4):99–113

    Google Scholar 

  • Denomme E, Thivierge S, Roy DW, Chown E, Gauthier A (1982) La carbonatite de St-Honoré et les gisements de niobium associes. In: 84e congres annual de l’ICM: Ou va notre industrie minerale?, vol 75 (839). Canadian Institute of Mining and Metallurgy, Montreal, QC, Canada, p 97

  • Dion C, Machado N, Joanisse A (1995) Geochronologie preliminaire des intrusions felsiques et alcalines associees aux mineralisations auriferes du segment de Caopatina, region de Chibougamau. In: Ministere des Ressources naturelles, Quebec, DV 95-04, pp 45

  • Doig R (1970) An alkaline rock province linking Europe and North America. Can J Earth Sci 7(1):22–26

    Google Scholar 

  • Dunworth EA, Bell K (2001) The Turiy massif, Kola Peninsula, Russia: isotopic and geochemical evidence for multi-source evolution. J Petrol 42(2):377–405

    Google Scholar 

  • Ernst RE, Buchan KL (2001) Large mafic magmatic events through time and links to mantle plume heads. In: Ernst RE, Buchan KL (eds.) Mantle plumes: their identification through time. Geol Soc Am Special Paper 352, pp 483–575

  • Ernst RE, Buchan KL (2004) Igneous rock associations in Canada 3. Large Igneous Provinces (LIPS) in Canada and adjacent regions: 3 Ga to Present. Geosci Can 32(3):103–126

    Google Scholar 

  • Ernst R, Halls HC (1980) Extension of the Matachewan and Abitibi diabase dike swarms west of the Kapuskasing structural zone, northern Ontario. Eos, Transactions Am Geophys Union 61(17):215

    Google Scholar 

  • Ernst RE, Halls HC (1984) Paleomagnetism of the Hearst dike swarm and implications for the tectonic history of the Kapuskasing structural zone, northern Ontario. Can J Earth Sci 21(12):1499–1506

    Google Scholar 

  • Ernst RE, Buchan KL, Campbell IH (2005) Frontiers in large igneous province research. Lithos 79(3–4):271–297

    Google Scholar 

  • Ernst RE, Buchan KL, Hanes JA, Hamilton MA, Harris BA (2008) Extent and origin of the ca. 1880 Ma "pan-Superior" LIP. In: GAC/MAC Programme with Abstracts

  • Faure G (1986) Principles of isotope geochemistry. Wiley, New York, USA

    Google Scholar 

  • Ferguson J, Currie KL (1971) Evidence of liquid immiscibility in alkaline ultrabasic dikes at Callander Bay, Ontario. J Petrol 12(3):561–568

    Google Scholar 

  • Gaal G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic Shield. Precam Res 35:15–52

    Google Scholar 

  • Garner EL, Murphy TJ, Gramlich JW, Paulsen PJ, Barnes IL (1976) Absolute Isotopic abundance ratios and the atomic weight of a reference sample of potassium. J Res US Natl Bur Stand Sect A 79(A):713–725

    Google Scholar 

  • Gerlach DC, Cliff RA, Davies GR, Norry M, Hodgson N (1988) Magma sources of the Cape Verdes archipelago—isotopic and trace element constraints. Geochim Cosmochim Acta 52(12):2979–2992

    Google Scholar 

  • Gerstenberger H, Haase G (1997) A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem Geol 136(3–4):309–312

    Google Scholar 

  • Gittins J, Macintyre RM, York D (1967) The ages of carbonatite complexes in eastern Canada. Can J Earth Sci 4(4):651–655

    Google Scholar 

  • Glevasskiy EB, Kridvik SG (1981) Precambrian carbonatite complex of Azov region. Naukova Dumka, Kiev, USSR

    Google Scholar 

  • Gogol OV, Bayanova TB, Balaganskaya EG, Delenistin AA (1998) New evidence of the duration of alkaline magmatism of the Kola region (Russia) based on Rb–Sr and U–Pb isotope data. Chin Sci Bull 43:45–56

    Google Scholar 

  • Gogol OV, Bayanova TB, Delenistin AA (2000) Stages of the carbonatite formation on the sample of the Seblyavr massif (according to isotope data). In: Proceedings of the XIX Seminar: Geochemistry of the magmatic rocks. GEOKHI, Moscow, Russia

  • Guillet GR (1962) Vermiculite in Ontario, with an appendix on perlite. Ontario Department of Mines, Industrial Mineral Report 7, pp 39

  • Harmer RE, Gittins J (1998) The case for primary, mantle-derived carbonatite magma. J Petrol 39(11–12):1895–1903

    Google Scholar 

  • Heaman LM, LeCheminant AN (2000) Anomalous U-Pb systematics in mantle-derived baddeleyite xenocrysts from Île Bizard: evidence for high temperature radon diffusion? Chem Geol 172(1–2):77–93

    Google Scholar 

  • Hoffman PF (1988) United plates of America, the birth of a craton—early Proterozoic assembly and growth of Laurentia. Annu Rev Earth Planet Sci 16:543–603

    Google Scholar 

  • Huhma H, Cliff RA, Perttunen V, Sakko M (1990) Sm-Nd and Pb isotopic study of mafic rocks associated with early Proterozoic continental rifting—the Perapohja schist belt in northern Finland. Contrib Mineral Petrol 104(3):369–379

    Google Scholar 

  • Ivanenko VV, Karpenko MI (1987) The excess Ar-40 in nepheline from the Kovdor massif, Kola Peninsula according to Ar-39/Ar-40 data. Geokhimiya (6):840–846

  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4(5):1889–1906

    Google Scholar 

  • Kamo SL, Czamanske GK, Amelin Y, Fedorenko VA, Davis DW, Trofimov VR (2003) Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett 214(1–2):75–91

    Google Scholar 

  • Kapustin IL (1980) Distribution of strontium, barium, and rare earth elements in associating minerals of ultrabasic-alkaline rocks. Doklady Akademii Nauk SSSR 252(3):720–724

    Google Scholar 

  • Karhu JA, Manttari I, Huhma H (2001) Radiometric ages and isotope systematics of some Finnish carbonatites. In: Gehor S, Wall F, Liferovich R (eds) Formation, exploration and exploitation of economic deposits associated with mantle carbon. EuroCarb Finland workshop. Programme and abstracts, vol 19, p 8

  • Kennedy I, Gagnon G (1981) Barite from the Niobec Mine, Chicoutimi, Quebec. Min Rec 12(6):355–357

    Google Scholar 

  • Kjarsgaard BA, Hamilton DL (1989) The genesis of carbonatites by immiscibility. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, United Kingdom, pp 388–404

    Google Scholar 

  • Klyunin SF, Panichev VV (1987) Geological building and mineral resources from the Panaryarvin zone and its framework. Northwest Geological Survey, Reprint, Monchegorsk, USSR, In

    Google Scholar 

  • Kogarko LN, Kononova VA, Orlova MP, Woolley AR (1995) Alkaline rocks and carbonatites of the world: Part 2, former USSR. Chapman and Hall, London, United Kingdom

    Google Scholar 

  • Kononova VA, Shanin LL, Arakelyants MM (1973) The time of formation of alkaline massifs and carbonatites. Izvestiya Akademii Nauk SSSR. Seriya Geologicheskaya 5:25–36

    Google Scholar 

  • Koster van Groos AF, Wyllie PJ (1973) Liquid immiscibility in join NaAlSi3O8-CaAl2Si2O8-Na2CO3–H2O. Am J Sci 273(6):465–487

    Google Scholar 

  • Kramm U (1993) Mantle components of carbonatites from the Kola Alkaline Province, Russia and Finland—Nd-Sr study. Eur J Mineral 5(5):985–989

    Google Scholar 

  • Kramm U (1994) Isotope evidence for ijolite formation by fenitization—Sr-Nd data of ijolites from the type locality Iivaara, Finland. Contrib Mineral Petrol 115(3):279–286

    Google Scholar 

  • Kramm U, Kogarko LN (1994) Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centers, Kola Alkaline Province, Russia. Lithos 32(3–4):225–242

    Google Scholar 

  • Kramm U, Sindern S (2004) Timing of Kola ultrabasic alkaline, alkaline and phoscorite–carbonatite magmatism. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, vol 1

  • Kramm U, Kogarko LN, Kononova VA, Vartiainen H (1993) The Kola Alkaline Province of the CIS and Finland—precise Rb-Sr ages define 380–360 Ma age range for all magmatism. Lithos 30(1):33–44

    Google Scholar 

  • Krasnova NI, Kopylova LN (1988) A geological base for mineralogic-technological mapping (Kovdorskoe Deposit). Izvestiya Akademii Nauk SSSR Seriya Geologicheskaya (5): 81–92

  • Kresten P (1990) The Alnö area (Alnöområdet). In: Lundqvist T, Gee D, Kumpulainen R, Karis L, Kresten P (eds) Beskrivning till berggrundskartan över Västernorrlands län. Sveriges geologiska undersökningar ser Ba, No 31, pp 238–278

  • Kresten P, Printzlau I, Rex D, Vartiainen H, Woolley A (1977) New ages of carbonatitic and alkaline ultramafic rocks from Sweden and Finland. Geologiska föreningens i Stockholm förhandlingar 99(568):62–65. doi:62 Part 1

    Google Scholar 

  • Krogh TE (1973) Low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37(3):485–494

    Google Scholar 

  • Kukharenko AA (1967) Alkalic magmatism of the eastern Baltic shield. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 96(5):547–566

    Google Scholar 

  • Kukharenko AA, Abakumova NB, Bagdasarov EA, Bulakh AG, Dontsova EI, Ilinsky GA, Nefedov AN, Orlova MP, Rimskaya-Korsakova OM, Sergeev AS (1965) The Caledonian complex of ultrabasic, alkaline rocks and carbonatites of the Kola Peninsula and northern Karelia (geology, petrology, mineralogy and geochemistry). Nedra, Moscow, USSR

    Google Scholar 

  • Kukharenko AA, Orlova MP, Bagdasarov EA (1969) Alkaline gabbroids of Karelia. Leningrad State University Press, Leningrad, USSR

    Google Scholar 

  • Kwon ST (1986) Pb-Sr-Nd isotope study of the 100 to 2700 Ma old alkalic rock-carbonatite complexes in the Canadian Shield: inferences on the geochemical and structural evolution of the mantle. Ph.D. dissertation, University of California at Santa Barbara, Santa Barbara, CA, United States, pp 253

  • Kwon ST, Tilton GR, Grüenenfelder MH (1989) Lead isotope relationships in carbonatites and alkalic complexes: an overview. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, United Kingdom, pp 360–387

    Google Scholar 

  • Lang AH, Armstrong JE, Thurber JB (1945) Manson Creek. Geological Survey of Canada, Map 876A

  • Larsen LM, Rex DC (1992) A review of the 2500 Ma span of alkaline-ultramafic, potassic and carbonatitic magmatism in West Greenland. Lithos 28(3–6):367–402

    Google Scholar 

  • Larsen LM, Rex DC, Secher K (1983) The age of carbonatites, kimberlites and lamprophyres from southern West Greenland—recurrent alkaline magmatism during 2500 million years. Lithos 16(3):215–221

    Google Scholar 

  • Le Roex AP, Lanyon R (1998) Isotope and trace element geochemistry of Cretaceous Damaraland lamprophyres and carbonatites, northwestern Namibia: Evidence for plume-lithosphere interactions. J Petrol 39(6):1117–1146

    Google Scholar 

  • Le Roux LJ, Glendenin LE (1963) Half-life of 232Th. In: Proc Natl Conf on Nuclear Energy, Pretoria, South Africa, pp 83–94

  • Lee WJ, Wyllie PJ, Rossman GR (1994) CO2-rich glass, round calcite crystals, and liquid immiscibility in the system CaO-SiO2-CO2 at 2.5 GPa. Am Miner 79(11–12):1135–1144

    Google Scholar 

  • Legaré S (2003) Fiche de gîte sigéom 32G12-0015, 2003. Mine du lac Shortt. Ministère des Ressources Naturelles, de la Faune et de Parcs, Québec, Canada

    Google Scholar 

  • Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precam Res 160(1–2):179–210

    Google Scholar 

  • Lindh A (1987) Westward growth of the Baltic Shield. Precam Res 35:53–70

    Google Scholar 

  • Lowdon JA, Stockwell CH, Tipper HW, Wanless RK (1963) Age determinations by the Geological Survey of Canada: report 3, isotopic ages. In: Age determination and geological studies. Geological Survey of Canada, Ottawa, ON, Canada, pp 1–120

  • Ludwig KR (1977) Effect of initial radioactive daughter disequilibrium on U-Pb isotope apparent ages of young minerals. J Res US Geol Surv 5(6):663–667

    Google Scholar 

  • Ludwig KR (1993) PBDAT—a computer program for processing Pb–U–Th isotope data, v 1.24. In: United States Geological Survey Open File Report 88–542, Revision of June 22, pp 1–33

  • Ludwig KR (2003) User’s manual for Isoplot/Ex version 3.00, a Geochronological toolkit for Microsoft Excel. In: Berkeley Geochronology Center Special Publication No. 4. Revised May 30, 2003. Available via http://www.bgc.org/isoplot_etc/Isoplot3betaManual.pdf

  • Lugmair GW, Galer SJG (1992) Age and isotopic relationships among the angrites Lewis Cliff-86010 and Angra Dos Reis. Geochim Cosmochim Acta 56(4):1673–1694

    Google Scholar 

  • Machado N, Gauthier G (1996) Determination of Pb-207/Pb-206 ages on zircon and monazite by laser- ablation ICPMS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil. Geochim Cosmochim Acta 60(24):5063–5073

    Google Scholar 

  • Machado N, Simonetti A (2001) U-Pb dating and Hf isotopic composition of zircon by laser ablation-MC- ICP-MS. In: Sylvester PJ (ed) Laser-ablation-ICPMS in the earth sciences: principles and applications, vol 29. Mineralogical Association of Canada, Ottawa, ON, Canada, pp 121–146

    Google Scholar 

  • Macintyre RM (1971) Apparent periodicity of carbonatite emplacement in Canada. Nature. Phys Sci 230(12):79–81

    Google Scholar 

  • Makhotkin IL, Zhuravlev DZ, Sablukov SM, Zherdev PY, Thompson RN, Gibson SA (1997) The plume- lithosphere interaction as a geodynamic formation model of the Arkhangel’sk diamond-bearing province. Transactions (Doklady) of the Russian Academy of Sciences. Earth Sci Sect 353(2):238–242

    Google Scholar 

  • Marty B, Tolstikhin I, Kamensky IL, Nivin V, Balaganskaya E, Zimmermann JL (1998) Plume-derived rare gases in 380 Ma carbonatites from the Kola region (Russia) and the argon isotopic composition in the deep mantle. Earth Planet Sci Lett 164(1–2):179–192

    Google Scholar 

  • Mattinson J (1973) Age and evolution of Tatoosh volcano-plutonic complex. Trans Am Geophys Union 54(4):494–506

    Google Scholar 

  • Meert JG, Walderhaug HJ, Torsvik TH, Hendriks BWH (2007) Age and paleomagnetic signature of the Alnö carbonatite complex (NE Sweden): additional controversy for the Neoproterozoic paleoposition of Baltica. Precam Res 154(3–4):159–174

    Google Scholar 

  • Mints MV (2007) Paleoproterozoic supercontinent: Origin and evolution of accretionary and collisional orogens exemplified in Northern Cratons. Geotecton 41(4):257–280

    Google Scholar 

  • Mitchell RH (1976) Potassium-argon geochronology of Poohbah Lake alkaline complex, Northwestern Ontario. Can J Earth Sci 13(10):1456–1459

    Google Scholar 

  • Mitchell AHG, Garson MS (1981) Mineral deposits and global tectonic settings. Academic, London, United Kingdom

    Google Scholar 

  • Mitrofanov FP, Zozulya DR, Bayanova TB, Levkovich NV (2000) The world’s oldest anorogenic alkali granitic magmatism in the Keivy structure on the Baltic Shield. Doklady Earth Sci 374(7):1145–1148

    Google Scholar 

  • Mueller PA, Frost CD (2006) The Wyoming Province: a distinctive Archean craton in Laurentian North America. Can J Earth Sci 43(10):1391–1397

    Google Scholar 

  • Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52(1):1–17

    Google Scholar 

  • Nielsen TFD (1985) Tertiary alkaline magmatism in East Greenland—a review. J Geol Soc 142:70–705

    Google Scholar 

  • Nironen M (1997) The Svecofennian orogen: a tectonic model. Precam Res 86(1–2):21–44

    Google Scholar 

  • Nykanen J, Laajoki K, Karhu JA (1997) Geology and geochemistry of the early Proterozoic Kortejarvi and Laivajoki carbonatites, central Fennoscandian Shield, Finland. Bull Geol Soc Finland 69(1–2):5–30

    Google Scholar 

  • Nykänen VM, Vuollo JI, Liipo JP, Piirainen TA (1994) Transitional (2.1 Ga) Fe-tholeiitic—tholeiitic magmatism in the Fennoscandian Shield signifying lithospheric thinning during Palaeoproterozoic extensional tectonics. Precam Res 70(1–2):45–65

    Google Scholar 

  • Parrish RR, Roddick JC, Loveridge WD, Sullivan RW (1987) Uranium-lead analytical techniques at the Geochronology Laboratory, Geological Survey of Canada. In: Radiogenic age and isotopic studies: Report 1, vol 87–2. Geological Survey of Canada, Ottawa, ON, Canada, pp 3–7

  • Parsons GE (1961) Niobium-bearing complexes east of Lake Superior. In: Ontario Geological Survey Report, vol 73. Ontario Geological Survey, Toronto, ON, Canada, pp 73

  • Patchett PJ, Kouvo O, Hedge CE, Tatsumoto M (1981) Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib Mineral Petrol 78(3):279–297

    Google Scholar 

  • Pell J (1994) Carbonatites, nepheline syenites, kimberlites and related rocks in British Columbia. In: Bulletin—Ministry of Energy, Mines and Petroleum Resources, Report, vol 88. British Columbia Ministry of Energy, Mines and Petroleum Resources, Victoria, BC, Canada, pp 133

  • Pell J, Höy T (1989) Carbonatites in a continental margin environment: the Canadian Cordillera. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, United Kingdom, pp 200–220

    Google Scholar 

  • Peltonen P, Kontinen A, Huhma H (1998) Petrogenesis of the mantle sequence of the Jormua ophiolite (Finland): melt migration in the upper mantle during Palaeoproterozoic continental break-up. J Petrol 39(2):297–329

    Google Scholar 

  • Percival JA, McGrath PH (1986) Deep crustal structure and tectonic history of the Northern Kapuskasing uplift of Ontario—an integrated petrological-geophysical Study. Tectonics 5(4):553–572

    Google Scholar 

  • Percival JA, West GF (1994) The Kapuskasing Uplift: a geological and geophysical synthesis. Can J Earth Sci 31(7):1256–1286

    Article  Google Scholar 

  • Pesonen LJ, Elming SA, Mertanen S, Pisarevsky S, D’Agrella MS, Meert JG, Schmidt PW, Abrahamsen N, Bylund G (2003) Palaeomagnetic configuration of continents during the Proterozoic. Tectonophys 375(1–4):289–324

    Google Scholar 

  • Pilipiuk AN, Ivanikov VV, Bulakh AG (2001) Unusual rocks and mineralization in a new carbonatite complex at Kandaguba, Kola Peninsula, Russia. Lithos 56(4):333–347

    Google Scholar 

  • Piper JDA (2007) The Neoproterozoic supercontinent Palaeopangaea. Gondwana Res 12(3):202–227

    Google Scholar 

  • Platt RG (1994) Perovskite, loparite and Ba-Fe hollandite from the Schryburt Lake carbonatite complex, northwestern Ontario, Canada. Mineral Magazine 58(390):49–57

    Google Scholar 

  • Pushkarev YD (1990) Megacycles in the evolution of the crust-mantle system. Nauka, Leningrad, USSR

    Google Scholar 

  • Puustinen K (1971) Geology of the Siilinjaervi carbonatite complex, eastern Finland. Bull. de la Commission Geologique de Finlande 249, p 43

  • Puustinen K, Karhu JA (1999) Halpanen calcite carbonatite dike, southeastern Finland. In: Autio S (ed) Geological survey of Finland, current research 1997–1998, vol 27. Geological Survey of Finland, Espoo, Finland, pp 39–41

    Google Scholar 

  • Riley R (1971) Big Beaver House carbonatite. In: Guillet GR (ed) Annual Report of Resident Geologists Section, Geological Branch, 1970, vol 46, pp 74–83

  • Rowe RB (1958) Niobium (columbium) deposits of Canada. In: Economic Geology Series, vol 18, No 533. Geological Survey of Canada, Ottawa, ON, Canada, pp 108

  • Rukhlov AS (1999) Dykes and explosive pipes of the Kandalaksha Graben (Kola Alkaline Province): models of magmatic processes and subcontinental mantle evolution. Ph.D. dissertation, Dept of Petrography, St. Petersburg State University, St. Petersburg, Russia, pp 287

  • Rukhlov AS, Bell K (2003) Depleted mantle: the story from Hf isotopes in zircons and baddeleyites from carbonatites. In: EGS-AGU-EUG Joint Assembly, Nice, France, April 2003, vol 5. Copernicus GmbH, European Geophysical Society, Katlenburg-Lindau, Germany, p 13944

  • Rukhlov AS, Gorham J (2007) 2006 diamond drilling and exploration at the Blue River Property: north of Blue River, British Columbia (Kamloops Mining Division). Assessment Report No. 29024, BC Min Energy Mines Petrol Res, pp 383

  • Rukhlov AS, Bell K, Ivanikov VV (2001) Archaean mantle below the Baltic Shield: isotopic evidence from intrusive carbonatites. J Afr Earth Sci 32(1):A30–A31

    Google Scholar 

  • Ryabchikov ID, Brey G, Kogarko LN, Bulatov VK (1989) Partial melting of carbonated peridotite at 50- Kbar. Geokhimiya (1):3–9

  • Sage RP (1987a) Geology of carbonatite—alkalic rock complexes in Ontario: "Carb" Lake carbonatite complex, District of Kenora. Ministry of Northern Development and Mines, Ontario Geological Survey, Study 53, pp 42

  • Sage RP (1987b) Geology of carbonatite—alkalic rock complexes in Ontario: Spanish River carbonatite complex, District of Sudbury. Ministry of Northern Development and Mines, Ontario Geological Survey, Study 30, pp 13

  • Sage RP (1987c) Geology of carbonatite—alkalic rock complexes in Ontario: Prairie Lake carbonatite complex, District of Thunder Bay. Ministry of Northern Development and Mines, Ontario Geological Survey, Study 46, pp 91

  • Sage RP (1987d) Geology of carbonatite—alkalic rock complexes in Ontario: Big Beaver House carbonatite complex, District of Kenora. Ministry of Northern Development and Mines, Ontario Geological Survey, Study 40, pp 71

  • Sage RP (1988a) Geology of carbonatite—alkalic rock complexes in Ontario: Cargill Township carbonatite complex, District of Cochrane. Ministry of Northern Development and Mines, Ontario Geological Survey, Study 36, pp 92

  • Sage RP (1988b) Geology of carbonatite—alkalic rock complexes in Ontario: Goldray carbonatite complex, District of Cochrane. Ministry of Northern Development and Mines, Ontario Geological Survey, Study 40, pp 35

  • Sage RP (1988c) Geology of carbonatite—alkalic rock complexes in Ontario: Argor carbonatite complex, District of Cochrane. Ministry of Northern Development and Mines, Ontario Geological Survey, Study 41, pp 90

  • Sage RP (1988d) Geology of carbonatite—alkalic rock complexes in Ontario: Firesand River carbonatite complex, District of Algoma. Ministry of Northern Development and Mines, Ontario Geological Survey, Study 47, pp 82

  • Sage RP (1988e) Geology of carbonatite—alkalic rock complexes in Ontario: Schryburt Lake carbonatite complex, District of Kenora. Ministry of Northern Development and Mines, Ontario Geological Survey, Study 50, pp 43

  • Sage RP (1988f) Geology of carbonatite—alkalic rock complexes in Ontario: Valentine Township carbonatite complex, District of Cochrane. Ministry of Northern Development and Mines, Ontario Geological Survey, Study 39, pp 37

  • Sage RP (1991) Alkalic rock, carbonatite and kimberlite complexes of Ontario, Superior Province. In: Thurston PC, Williams HR, Sutcliffe RH, Stott GM (eds) Geology of Ontario, vol 4 (2). Ministry of Northern Development and Mines, Ontario, Canada, pp 683–709

    Google Scholar 

  • Sage RP, Wright W (1979) Schryburt Lake carbonatite complex, District of Kenora (Patricia portion). In: Ontario Geol Survey Prelim Map P 2236, Geol Series, Scale 1:15 840 or 1 inch to 1/4 mile, Toronto, ON, Canada

  • Sano Y, Terada K, Hidaka H, Yokoyama K, Nutman AP (1999) Palaeoproterozoic thermal events recorded in the similar to 4.0 Ga Acasta gneiss, Canada: Evidence from SHRIMP U-Pb dating of apatite and zircon. Geochim Cosmochim Acta 63(6):899–905

    Google Scholar 

  • Sasada T, Hiyagon H, Bell K, Ebihara M (1997) Mantle-derived noble gases in carbonatites. Geochim Cosmochim Acta 61(19):4219–4228

    Google Scholar 

  • Satterly J (1968) Aeromagnetic maps of carbonatite-alkalic complexes in Ontario. In: Ontario Dept Mines Northern Affairs Prelim Map, pp 452

  • Savatenkov VM, Sulimov RB, Goncharov GN, Pushkarev YD (1998) Sm–Nd, Rb–Sr and Pb–Pb isotope systematics of the basic–ultrabasic rocks in the Gremyakha–Vyrmes massif: the role of the crust–mantle interaction in the magma and ore generation. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva. Proc Russ Mineral Soc 127(5):15–25

    Google Scholar 

  • Schärer U (1984) The effect of initial Th-230 disequilibrium on young U-Pb ages—the Makalu Case, Himalaya. Earth Planet Sci Lett 67(2):191–204

    Google Scholar 

  • Shanin LL, Kononova VA, Ivanov IB (1967) The use of nepheline in K-Ar geochronometry. Izvestiya Akademii Nauk SSSR. Seriya Geologicheskaya 5:19–30

    Google Scholar 

  • Sharkov EV, Smolkin VF (1998) Palaeoproterozoic layered intrusions of the Russian part of the Fennoscandian Shield: a review. Tran Inst Min Metall Sect B - App Earth Sci 107:B23–B38

    Google Scholar 

  • Sharpe JL (1987) Geochemistry of the Cargill carbonatite complex, Kapuskasing, Ontario. Master’s thesis, Dept of Earth Sciences. Carleton University, Ottawa, Canada, p 73

    Google Scholar 

  • Shchiptsov VV, Tson OV, Zheldakov YA (1991) Distribution of U-Th-Pb and rare earths in apatites from Karelia. Mineralogicheskiy Zhurnal 13(4):92–98

    Google Scholar 

  • Sherback NP, Artemenko GV, Barnitsky YN (1989) Geochronological scale of the Precambrian of the Ukrainian Shield. Naukova Dumka, Kiev, USSR

    Google Scholar 

  • Shinkarev NF, Ivanikov VV (1973) Formation of alkalic dykes in the Tury Peninsula. In: Sobolev VS (ed) Problems of magmatic geology, vol 213. Nauka, Sibirskoye Otdeleniye Instituta Geologii i Geofiziki, Novosibirsk, USSR, pp 129–142

    Google Scholar 

  • Simonetti A, Bell K, Viladkar SG (1995) Isotopic data from the Amba Dongar carbonatite complex, west- central India—evidence for an enriched mantle source. Chem Geol 122(1–4):185–198

    Google Scholar 

  • Sindern S, Zaitsev AN, Demeny A, Bell K, Chakmouradian AR, Kramm U, Moutte J, Rukhlov AS (2004) Mineralogy and geochemistry of silicate dyke rocks associated with carbonatites from the Khibina complex (Kola, Russia)—isotope constraints on genesis and small-scale mantle sources. Mineral Petrol 80(3–4):215–239

    Google Scholar 

  • Smolkin VF (1997) Magmatism of the Early Proterozoic (2.5–1.7 Ga) rift system in the northwestern Baltic Shield. Petrology 5(4):350–365

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on Geochronology—convention on use of decay constants in geochronology and cosmochronology. Earth Planet Sci Lett 36(3):359–362

    Google Scholar 

  • Stockford HR (1972) James Bay pyrochlore deposit. Can Min Metall Bull 65(722):61

    Google Scholar 

  • Tappe S, Jenner GA, Foley SF, Heaman L, Besserer D, Kjarsgaard BA, Ryan B (2004) Torngat ultramafic lamprophyres and their relation to the north Atlantic alkaline province. Lithos 76(1–4):491–518

    Google Scholar 

  • Tappe S, Foley SF, Jenner GA, Kjarsgaard BA (2005) Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: Rationale and implications. J Petrol 46(9):1893–900

    Google Scholar 

  • Tappe S, Foley SF, Stracke A, Romer RL, Kjarsgaard BA, Heaman LM, Joyce N (2007) Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr-Nd-Hf-Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet Sci Lett 256(3–4):433–454

    Google Scholar 

  • Tappe S, Foley SF, Kjarsgaard BA, Romer RL, Heaman LM, Stracke A, Jenner GA (2008) Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate— fluxed melting of cratonic MARID-type metasomes. Geochim Cosmochim Acta 72(13):3258–3286

    Google Scholar 

  • Taylor SR, McLennan SM, McCulloch MT (1983) Geochemistry of loess, continental crustal composition and crustal model ages. Geochim Cosmochim Acta 47(11):1897–1905

    Google Scholar 

  • Thivierge S, Roy DW, Chown EH, Gauthier A (1983) Evolution of the St. Honoré alkaline complex (Quebec) after emplacement. Mineralium Deposita 18(2A):267–283

    Google Scholar 

  • Tichomirowa M, Grosche G, Gotze J, Belyatsky BV, Savva EV, Keller J, Todt W (2006) The mineral isotope composition of two Precambrian carbonatite complexes from the Kola Alkaline Province—Alteration versus primary magmatic signatures. Lithos 91(1–4):229–249

    Google Scholar 

  • Tilton GR, Bell K (1994) Sr-Nd-Pb isotope relationships in Late Archean carbonatites and alkaline complexes—applications to the geochemical evolution of Archean mantle. Geochim Cosmochim Acta 58(15):3145–3154

    Google Scholar 

  • Tilton GR, Kwon ST (1990) Isotopic evidence for crust mantle evolution with emphasis on the Canadian Shield. Chem Geol 83(3–4):149–163

    Google Scholar 

  • Todt W, Cliff RA, Hanser A, Hofmann AW (1996) Evaluation of a 202Pb - 205Pb double spike for high- precision lead isotope analysis. In: Basu AR, Hart SR (eds) Earth processes: reading the isotopic code, vol 95. American Geophysical Union, Washington, DC, United States, pp 429–437

    Google Scholar 

  • Tolstikhin IN, Kamensky IL, Marty B, Nivin VA, Vetrin VR, Balaganskaya EG, Ikorsky SV, Gannibal MA, Weiss D, Verhulst A, Demaiffe D (2002) Rare gas isotopes and parent trace elements in ultrabasic- alkaline-carbonatite complexes, Kola Peninsula: Identification of lower mantle plume component. Geochim Cosmochim Acta 66(5):881–901

    Google Scholar 

  • Torsvik TH, Smethurst MA, Meert JG, VanderVoo R, McKerrow WS, Brasier MD, Sturt BA, Walderhaug HJ (1996) Continental break-up and collision in the Neoproterozoic and Palaeozoic—a tale of Baltica and Laurentia. Earth Sci Rev 40(3–4):229–258

    Google Scholar 

  • Upton BGJ, Emeleus CH, Heaman LM, Goodenough KM, Finch AA (2003) Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting. Lithos 68(1–2):43–65

    Google Scholar 

  • Valeriano CM, Machado N, Simonetti A, Valladares CS, Seer HJ, Simoes LSA (2004) U-Pb geochronology of the southern Brasilia belt (SE Brazil): sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. Precam Res 130(1–4):27–55

    Google Scholar 

  • Vallée M, Dubuc F (1970) St-Honoré carbonatite complex, Quebec. Can Min Metall Bull 63(704):1384–1389

    Google Scholar 

  • Vartiainen H, Paarma H (1979) Geological characteristics of the Sokli carbonatite complex, Finland. Econ Geol 74(5):1296–1306

    Google Scholar 

  • Vartiainen H, Woolley AR (1974) The age of the Sokli carbonatite, Finland, and some relationships of the North Atlantic igneous province. In: Bulletin of the Geological Society of Finland, vol 46, part 1. Geological Society of Finland, Helsinki, pp 81–91

  • Veizer J, Bell K, Jansen SL (1992) Temporal distribution of carbonatites. Geology 20(12):1147–1149

    Google Scholar 

  • Verhulst A, Balaganskaya E, Kirnarsky Y, Demaiffe D (2000) Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia). Lithos 51(1–2):1–25

    Google Scholar 

  • von Eckermann H (1948) The alkaline district of Alnö island, Sveriges Geol Unders Ser Ca, No 38, pp 176

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335(6188):343–346

    Google Scholar 

  • Watkinson DH, Grimes JH (1974) The Spanish River alkalic rock-carbonatite complex, twps. 107 and 108, Ontario. In: Institute on Lake Superior Geology Meeting, vol 20. Institute on Lake Superior Geology, United States, p 38

  • Welin E, Lundstroem I, Aaberg G (1972) Fission track studies on hornblende, biotite and phlogopite from Sweden. Bull Geol Soc Finland 44(1):35–46

    Google Scholar 

  • White GPE (1982) Notes on carbonatites in central British Columbia (83D/6E). In: Bulinckx D (ed) Geological fieldwork, 1981: a summary of field activities, paper 1982–1. British Columbia Geological Division, Victoria, BC, Canada, pp 68–69

    Google Scholar 

  • Wilson M, Lyashkevich ZM (1996) Magmatism and the geodynamics of rifting of the Pripyat - Dnieper - Donets rift, East European Platform. Tectonophys 268(1–4):65–81

    Google Scholar 

  • Woodard J, Hetherington CJ, Huhma H (2008) Sr, Sm and Nd isotope geochemistry and U-Th-Pb geochronology of the Naantali carbonatite, SW Finland. Geochim Cosmochim Acta 72(12):A1033–A1033

    Google Scholar 

  • Woolley AR (1987) Alkaline rocks and carbonatites of the world: Part 1, North and South America. British Museum (Natural History), London, United Kingdom

    Google Scholar 

  • Woolley AR (1989) The spatial and temporal distribution of carbonatites. In: Bell K (ed) Carbonatites: Genesis and evolution. Unwin Hyman, London, pp 15–37

    Google Scholar 

  • Woolley AR (2001) The alkaline rocks and carbonatites of the world. 3, Africa. Geological Society of London, London, United Kingdom

    Google Scholar 

  • Woolley AR (2003) Igneous silicate rocks associated with carbonatites: their diversity, relative abundances and implications for carbonatite genesis. Per Mineral 72:9–17

    Google Scholar 

  • Woolley AR, Kjarsgaard BA (2008) Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. Can Mineral 46(4):741–752

    Google Scholar 

  • Wyllie PJ, Huang WL (1976) Petrogenetic grid for siliceous dolomites extended to mantle peridotite compositions and to conditions for magma generation. Am Miner 61(7–8):691–698

    Google Scholar 

  • Wyllie PJ, Tuttle OF (1960) The system CaO-CO2–H2O and the origin of carbonatites. J Petrol 1(1):1–46

    Google Scholar 

  • Wyllie PJ, Baker MB, White BS (1990) Experimental boundaries for the origin and evolution of carbonatites. Lithos 26(1–2):3–19

    Google Scholar 

  • Yang ZM, Woolley A (2006) Carbonatites in China: a review. J Asian Earth Sci 27(5):559–575

    Google Scholar 

  • Zaitsev A, Bell K (1995) Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola Peninsula, Russia. Contrib Mineral Petrol 121(3):324–335

    Google Scholar 

  • Zaitsev AN, Bell K, Wall F, Le Bas MJ (1997) Alkaline rare earth element carbonates from carbonatites of the Khibiny massif: mineralogy and genesis. Transactions (Doklady) of the Russian Academy of Sciences. Earth Sci Sect 355(5):786–790

    Google Scholar 

  • Zhao GC, Sun M, Wilde S, Li SZ (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Sci Rev 67(1–2):91–123

    Google Scholar 

  • Zozulya DR, Bayanova TB, Eby GN (2005) Geology and age of the Late Archean Keivy alkaline province, northeastern Baltic Shield. J Geol 113(5):601–608

    Google Scholar 

  • Zozulya DR, Bayanova TB, Serov PN (2007) Age and isotopic geochemical characteristics of Archean carbonatites and alkaline rocks of the Baltic shield. Doklady Earth Sci 415(6):874–879

    Google Scholar 

  • Zozulya DR, Bayanova TB, Eby N, Kullerud K, Ravna E (2008) Geochemistry and mantle sources for Archean alkaline rocks from Greenland, the Baltic and Northern Norway. In: Abstracts of the 33 rd International Geological Congress, Session MPI-07: Alkaline and carbonatite magmatism and related ore deposits. Oslo, August 6–14, 2008

Download references

Acknowledgements

This study was initiated during an extended leave of absence of A.R. from the Department of Petrography at St. Petersburg State University. This work was partially supported by NSERC grants to K.B., and NATO and Carleton University post-doctoral support to A.R. Part of this work was carried out in the Geochronology Laboratory of the Geological Survey of Canada. We thank Yuri Amelin for his help with the analytical work at the GSC and discussion of the results and Antonio Simonetti for his help with the LA-ICPMS analyses. John Blenkinsop helped us develop new mass spectrometry procedures at Carleton University. George R. Tilton kindly provided his “Lunar” mixed 205Pb-230Th-235U spike. In addition, the Royal Ontario Museum, John Gittins, Natalia A. Kascheeva, Dmitri Konopelko, Anton Pilipiuk and Elizabeth Ann Spencer are thanked for providing their rock samples, Ineke de Jong for her help in the laboratory, and Alexandra Blinova for assisting with the chemistry, mass spectrometry and useful discussions. The reviews by Alan Woolley, Yuri Amelin, editorial work by Antonio Simonetti, and an informal review by Richard Ernst greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Rukhlov.

Additional information

Editorial handling: A. Simonetti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rukhlov, A.S., Bell, K. Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution. Miner Petrol 98, 11–54 (2010). https://doi.org/10.1007/s00710-009-0054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-009-0054-5

Keywords

Navigation