Skip to main content
Log in

Diamonds and eclogites of the Jericho kimberlite (Northern Canada)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We studied diamonds and barren and diamondiferous eclogite xenoliths from the Jericho kimberlite (Northern Slave craton). The majority of the diamonds are non-resorbed octahedral crystals, with moderately aggregated N (IaB < 50%, N < 300 ppm) and δ13C = −5 to −41‰. The diamonds belong to “eclogitic” (90% of the studied samples), “websteritic” (7%) and “peridotitic” (3%) assemblages. The Jericho diamonds differ from the majority of “eclogitic” diamonds worldwide in magnesian compositions of associated minerals and extremely light C isotopic compositions (δ13C = −24 to −41‰). We propose that metasomatism triggered by H2O fluids may have been involved in the diamond formation. Multiple episodes of the metasomatism and associated melt extraction of various ages are evident in Jericho eclogite xenoliths where primary garnet and clinopyroxene have been recrystallized to more magnesian minerals with higher contents of some incompatible trace elements and to hydrous secondary phases. The model is supported by the general similarity of mineral compositions in diamondiferous eclogites to those in diamond inclusions and to secondary magnesian garnet and clinopyroxene in recrystallized barren eclogites. The ultimate products of the metasomatism could be “websteritic” diamond assemblages sourced from magnesian eclogites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Appleyard CM, Viljoen KS, Dobbe R (2004) A study of eclogitic diamonds and their inclusions from the Finsch kimberlite pipe, South Africa. Lithos 77:317–332. doi:10.1016/j.lithos.2004.04.023

    Article  Google Scholar 

  • Aulbach S, Stachel T, Viljoen KS, Brey GP, Harris JW (2002) Eclogitic and websteritic diamond sources beneath the Limpopo Belt—is slab-melting the link? Contrib Mineral Petrol 143:56–70

    Google Scholar 

  • Aulbach S, Pearson NJ, O’Reilly SY, Doyle BJ (2007) Origins of xenolithic eclogites and pyroxenites from the Central Slave Craton, Canada. J Petrol 48:1843–1873. doi:10.1093/petrology/egm041

    Article  Google Scholar 

  • Barth MG, Rudnick RL, Horn I, McDonough WF, Spicuzza MJ, Valley JW, Haggerty SE (2002) Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites. Geochim Cosmochim Acta 66:4325–4345. doi:10.1016/S0016-7037(02)01004-9

    Article  Google Scholar 

  • Bell DR, Gregoire M, Grove TL, Chatterjee N, Carlson RW, Buseck PR (2005) Silica and volatile-element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal Craton. Contrib Mineral Petrol 150(3):251–267. doi:10.1007/s00410-005-0673-8

    Article  Google Scholar 

  • Bostock MG (1997) Anisotropic upper-mantle stratigraphy and architecture of the Slave craton. Nature 390:392–395. doi:10.1038/37102

    Article  Google Scholar 

  • Boyd SR, Kiflawi I, Woods GS (1994) The relationship between infrared absorption and the A defect concentration in diamond. Philos Mag B 69:1149–1153. doi:10.1080/01418639408240185

    Article  Google Scholar 

  • Boyd SR, Kiflawi I, Woods GS (1995) Infrared absorption by the nitrogen aggregate in diamond. Philos Mag B 72:351–361. doi:10.1080/13642819508239089

    Article  Google Scholar 

  • Brey GP, Kohler T (1990) Geothermometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31(6):1353–1378

    Google Scholar 

  • Bulanova GP (1995) The formation of diamond. J Geochem Explor 53:1–23. doi:10.1016/0375-6742(94)00016-5

    Article  Google Scholar 

  • Cartigny P (2005) Stable isotopes and the origin of diamond. Elements 1:79–84. doi:10.2113/gselements.1.2.79

    Article  Google Scholar 

  • Cartigny P, Harris JW, Phillips D, Boyd SR, Javoy M (1998) Subduction-related diamonds? The evidence for a mantle-derived origin based on δ13C-δ15 N measurements. Chem Geol 147:147–159. doi:10.1016/S0009-2541(97)00178-2

    Article  Google Scholar 

  • Cartigny P, Stachel T, Harris J, Javoy M (2004) Constraining diamond metasomatic growth using C- and N-stable isotopes; examples from Namibia. Lithos 77(1–4):359–373. doi:10.1016/j.lithos.2004.03.024

    Article  Google Scholar 

  • Chen Z (1999) Inter-element fractionation and correction in laser ablation ICPMS. J Anal At Spectrom 14:1823–1828. doi:10.1039/a903272j

    Article  Google Scholar 

  • Clark CD, Collins AT, Woods GS (1992) Optical spectroscopy of diamond. In: Field JE (ed) The properties of natural and synthetic diamond. Academic Press, New York, pp 35–69

    Google Scholar 

  • Coleman RG, Lee DE, Beatty LB, Brannock WW (1965) Eclogites and eclogites; their differences and similarities. Geol Soc Am Bull 76(5):483–508. doi:10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2

    Article  Google Scholar 

  • Cook FA, van der Velden AJ, Hall KW, Roberts BJ (1999) Frozen subduction in Canada’s Northwest Territories; Lithoprobe deep lithospheric reflection profiling of the western Canadian Shield. Tectonics 18:1–24. doi:10.1029/1998TC900016

    Article  Google Scholar 

  • Cookenboo HO, Kopylova MG, Daoud DK (1998a) A chemically and texturally distinct layer of diamondiferous eclogite beneath the central Slave craton, Northern Canada. In: Extended abstracts, 7th international kimberlite conference, Cape Town, pp 164–166

  • Davies RM, Griffin WL, O’ Reilly SY, Doyle BJ (2004) Mineral Inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos 77:39–55. doi:10.1016/j.lithos.2004.04.016

    Article  Google Scholar 

  • De Corte K, Cartigny P, Shatsky VS, De Paepe P, Sobolev NV, Javoy M (1999) Characteristics of microdiamonds from UHPM rocks of the Kokchetav Massif (Kazakhstan). In: Dawson JB, Nixon PH (eds) Proceedings of the 7th international kimberlite conference, vol 1, Cape Town, pp 174–182

  • Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev 58:247–278. doi:10.1016/S0012-8252(02)00064-8

    Article  Google Scholar 

  • Deines P, Harris JW (2004) New insights into the occurrence of 13C-depleted carbon in the mantle from two closely associated kimberlites: Letlhakane and Orapa, Botswana. Lithos 77:125–142. doi:10.1016/j.lithos.2004.04.015

    Article  Google Scholar 

  • Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contrib Mineral Petrol 71:13–22. doi:10.1007/BF00371878

    Article  Google Scholar 

  • Evans T, Harris JW (1989) Nitrogen aggregation, inclusion equilibration temperatures and the age of diamonds. In: Ross J et al (eds) Kimberlites and related rocks v.2. Their mantle/crust setting. Special Publication on Geological Soceity of Australia, vol 14, pp 1002–1006

  • Galimov EM (1991) Isotope fractionation related to kimberlite magmatism and diamond formation. Geochim Cosmochim Acta 55:1697–1708. doi:10.1016/0016-7037(91)90140-Z

    Article  Google Scholar 

  • Galimov EM, Solov’yeva LV, Belomestnykh AV (1989) Carbon isotope composition of metasomatized mantle rocks. Geochem Int 26(11):38–43

    Google Scholar 

  • Heaman LM, Creaser RA, Cookenboo HO, Chacko T (2006) Multi-stage modification of the northern slave mantle lithosphere: evidence from zircon- and diamond-bearing eclogite xenoliths entrained in Jericho Kimberlite, Canada. J Petrol 47(4):821–858. doi:10.1093/petrology/egi097

    Article  Google Scholar 

  • Hills DV, Haggerty SE (1989) Petrochemistry of eclogites from the Koidu kimberlite complex, Sierra Leone. Contrib Mineral Petrol 103:397–422. doi:10.1007/BF01041749

    Article  Google Scholar 

  • Ireland TA, Rudnick RL, Spetsius Z (1994) Trace elements in diamond inclusions from eclogites reveal link to Archean granites. Earth Planet Sci Lett 128:199–213. doi:10.1016/0012-821X(94)90145-7

    Article  Google Scholar 

  • Jacob DE (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77:295–313. doi:10.1016/j.lithos.2004.03.038

    Article  Google Scholar 

  • Javoy M, Pinaeu F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57:41–62

    Article  Google Scholar 

  • Kaminsky FV, Zakharchenko OD, Griffin WL, Channer DMD, Khachatryan-Blinova GK (2000) Diamond from the Guaniamo area, Venezuela. Can Mineral 38:1347–1370. doi:10.2113/gscanmin.38.6.1347

    Article  Google Scholar 

  • Kerr AC (2003) Oceanic plateaus. In: Holland HD, Turekian KK (eds) Treatise on geochemistry v.3, The Crust, pp 537–565

  • Klein (2003) Geochemistry of the igneous oceanic crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry v.3, The Crust, pp 433–463

  • Kopylova MG (2003) Two distinct origins of the northern Slave eclogites. Extended abstract, 8th international kimberlite conference, Victoria, Canada

  • Kopylova MG, Hayman P (2008) Petrology and textural classification of the Jericho kimberlite, Northern Slave Province, Nunavut, Canada. Can J Earth Sci 45(6):701–723. doi:10.1139/E08-011

    Article  Google Scholar 

  • Kopylova MG, Russell JK, Cookenboo HO (1999a) Mapping the lithosphere beneath the North Central Slave Craton. In: Dawson JB, Nixon PH (eds) Proceedings of the 7th international kimberlite conference, vol 1, Cape Town, pp 468–479

  • Kopylova MG, Russell JK, Cookenboo HO (1999b) Petrology of peridotite and pyroxenite xenoliths from the Jericho kimberlite: implications for the thermal state of the mantle beneath the Slave craton, northern Canada. J Petrol 40:79–104. doi:10.1093/petrology/40.1.79

    Article  Google Scholar 

  • Kopylova MG, Lo J, Christensen NI (2004) Petrological constraints on seismic properties of the Slave upper mantle (Northern Canada). Lithos 77:493–510. doi:10.1016/j.lithos.2004.03.012

    Article  Google Scholar 

  • Le Bas MJ (2000) IUGS Reclassification of the high-Mg and picritic volcanic rocks. J Petrol 41(10):1467–1470

    Google Scholar 

  • Liu G, Wang XB, Wen QB (1998) Carbon isotopic composition of mantle xenoliths in alkali basalt from Damaping, Hebei. Chin Sci Bull 43(24):2095–2098

    Article  Google Scholar 

  • Luth RW (2003) Mantle volatiles—distribution and consequences. In: Holland HD and Turekian KK (eds) Treatise on geochemistry v.2, The mantle and core, pp 319–361

  • McCallum ME, Huntley PM, Falk RW, Otter ML (1994) Morphological, resorption and etch feature trends of diamonds from kimberlite populations within the Colorado-Wyoming state line district, USA. In: Meyer HOA, Leonardos O (eds) Proceedings of the 5th international kimberlite conference, Brasilia, Brazil, Companhia de Pesquisa de Recursos Minerals, pp 78–97

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253. doi:10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • McKenna N, Gurney JJ, Klump J, Davidson JM (2004) Aspects of diamond mineralization and distribution at the Helam mine, South Africa. Lithos 77:193–208. doi:10.1016/j.lithos.2004.04.004

    Article  Google Scholar 

  • Mendelssohn MJ and Milledge HJ (1995) Geologically significant information from routine analysis of the mid-infrared spectra of diamonds

  • Meyer HOA (1987) Inclusions in diamond. In: Nixon PH (ed) Mantle xenoliths. Wiley, Toronto, pp 501–522

    Google Scholar 

  • Mibe K, Fujii T, Yasuda A (2002) Composition of aqueous fluid coexisting with mantle minerals at high pressure and its bearing on the differentiation of the Earth’s mantle. Geochim Cosmochim Acta 66(12):2273–2285. doi:10.1016/S0016-7037(02)00856-6

    Article  Google Scholar 

  • Misra KC, Anand M, Taylor LA, Sobolev NV (2004) Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contrib Mineral Petrol 146(6):696–714. doi:10.1007/s00410-003-0529-z

    Article  Google Scholar 

  • Mitchell RH (1995) Kimberlites, orangeites, and related rocks. Plenum Press, New York, p 410

    Google Scholar 

  • Palyanov YN, Shatsky VS, Sobolev NV, Sokol AG (2007) The role of mantle ultrapotassic fluids in diamond formation. Proc Natl Acad Sci USA 104(22):9122–9127. doi:10.1073/pnas.0608134104

    Article  Google Scholar 

  • Phillips D, Harris JW, Viljoen KS (2004) Mineral chemistry and termobarometry of inclusions from De Beers Pool diamonds, Kimberley, South Africa. Lithos 77:155–179. doi:10.1016/j.lithos.2004.04.005

    Article  Google Scholar 

  • Pokhilenko NP, Sobolev NV, Reutsky VN, Hall AE, Taylor LA (2004) Crystalline inclusions and C isotope ratios in diamonds from the Snap Lake/King Lake kimberlite dyke system: evidence of ultradeep and enriched lithospheric mantle. Lithos 77:57–67. doi:10.1016/j.lithos.2004.04.019

    Article  Google Scholar 

  • Russell JK, Dipple GM, Kopylova MG (2001) Heat production and heat flow in the mantle lithosphere, Slave craton, Canada. Phys Earth Planet Inter 123(1):27–44. doi:10.1016/S0031-9201(00)00201-6

    Article  Google Scholar 

  • Ryabchikov I (1982) Compositions of aqueous fluids in equilibrium with pyroxenes and olivines at mantle pressures and temperatures. Contrib Mineral Petrol 79:80–84. doi:10.1007/BF00376964

    Article  Google Scholar 

  • Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res 106:117–134. doi:10.1016/S0301-9268(00)00128-5

    Article  Google Scholar 

  • Schmidberger SS, Simonetti A, Heaman LM, Creaser RA, Whiteford S (2007) Lu-Hf, in situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: Evidence for Paleoproterozoic subduction beneath the Slave craton, Canada. Earth Planet Sci Lett 254(1–2):55–68. doi:10.1016/j.epsl.2006.11.020

    Article  Google Scholar 

  • Smart K, Heaman LM, Chacko T, Simonetti A (2007) Mineral Chemistry and Clinopyroxene Sr–Pb compositions of mantle eclogite xenoliths from the Jericho Kimberlite, Nunavut. Abstracts GAC-MAC Conference, Yellowknife, vol 32, p 76

  • Smith D, Boyd FR (1992) Compositional zonation in garnets in peridotite xenoliths. Contrib Mineral Petrol 112(1):134–147. doi:10.1007/BF00310960

    Article  Google Scholar 

  • Sobolev NV, Yefimova ES, Koptil VI (1999) Mineral inclusions in diamonds in the Northeast of the Yakutian diamondiferous province. In: Dawson JB, Nixon PH (eds) Proceedings of the 7th international kimberlite conference, vol 2, Cape Town, pp 816–823

  • Sokol AG YN, Pal’yanov YN, Pal’yanova GA, Khokhryanov AF, Borzdov YM (2001) Diamond and graphite crystallization from C–O–H fluids under high pressure and high temperature conditions. Diam Relat Mater 10(12):2131–2136. doi:10.1016/S0925-9635(01)00491-5

    Article  Google Scholar 

  • Sokol AG, Pal’yanov YN (2008) Diamond formation in the system MgO–SiO2–H2O-C at 7.5 GPa and 1, 600 degrees C. Contrib Mineral Petrol 155(1):33–43. doi:10.1007/s00410-007-0221-9

    Article  Google Scholar 

  • Spetsius ZV (1999) Two generations of diamonds in eclogite xenoliths from Yakutia. In: Dawson JB, Nixon PH (eds) Proceedings of the 7th international kimberlite conference, vol 2, Cape Town, pp 823–828

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34(1–2):2–32

    Google Scholar 

  • Stachel T, Harris JW, Aulbach S, Deines P (2002) Kankan diamonds (Guinea) III; δ13C and nitrogen characteristics of deep diamonds. Contrib Mineral Petrol 142:465–475

    Google Scholar 

  • Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS (2004) The trace element composition of silicate inclusions in diamonds; a review. Lithos 77(1–4):1–19. doi:10.1016/j.lithos.2004.03.027

    Article  Google Scholar 

  • Szabo’ C, Bodnar RJ (1995) Chemistry and origin of mantle sulfides in spinel peridotite xenoliths from alkaline basaltic lavas, Nograd-Gomor volcanic field, northern Hungary and southern Slovakia. Geochim Cosmochim Acta 59(19):3917–3927

    Article  Google Scholar 

  • Tappert R, Stachel T, Harris JW, Shimizu N, Brey GP (2005) Mineral inclusions in diamonds from the Panda kimberlite, Slave Province, Canada. Eur J Mineral 17(3):423–440

    Article  Google Scholar 

  • Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I: mineralogy, petrography, and whole rock chemistry. J Geol 97:551–567

    Google Scholar 

  • Taylor WR, Jacques AL, Ridd M (1990) Nitrogen-defect aggregation characteristics of some Australian diamonds: time-temperature constraints on the source region of pipe and alluvial diamonds. Am Mineral 75:1290–1310

    Google Scholar 

  • Taylor LA, Milledge HJ, Bulanova GP, Snyder GA, Keller RA (1998) Metasomatic eclogitic diamond growth; evidence from multiple diamond inclusions. Inter Geol Rev 40(8):663–676

    Article  Google Scholar 

  • Taylor LA, Snyder GA, Keller R, Remley DA, Anand M, Wiesli R, Valley J, Sobolev NV (2003) Petrogenesis of group A eclogites and websterites; evidence from the Obnazhennaya Kimberlite, Yakutia. Contrib Mineral Petrol 145(4):424–443

    Article  Google Scholar 

  • Taylor LA, Anand M (2004) Diamonds: time capsules from the Siberian Mantle. Chemie der Erde 64:1–74

    Article  Google Scholar 

  • Thomassot E, Cartigny P, Harris JW and Viljoen KS (2007) Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet Sci Lett 257:362–371

    Google Scholar 

  • Van Breemen O, King JE and Davis WJ (1989) U–Pb zircon and monazite ages from plutonic rocks in the Contwoyto—Nose Lakes map area, central Slave, District of Mackenzie. In: Radiogenic ages and isotope studies, Report 3, Geological Survey of Canada, paper 89–2, pp 29–38

  • Viljoen KS, Phillips D, Harris JW, and Robinson DH (1999) Mineral inclusions in diamonds from the Venetia kimberlites, Northern Province, South Africa. In: Dawson JB, Nixon PH (eds) Proceedings of the 7th international kimberlite conference, vol 2, Cape Town, pp 888–895

Download references

Acknowledgments

We are grateful to Tahera Diamond Corporation and personally to late Hugo Dummett for providing diamonds for this study. This research was funded by a National Science and Engineering Research Grant. We also wish to thank Mati Raudsepp, for his suggestions and help in the preparation of samples and data collection, and Jody Spence, for his work in processing trace element data of DI. Reviews by S. Aulbach and L. Taylor improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea De Stefano.

Additional information

Communicated by T. L. Grove.

Electronic Supplementary Material

Characteristics of diamonds from Jericho (DOC 291 kb)

Major element chemistry of minerals from Jericho diamondiferous eclogites (DOC 104 kb)

410_2009_384_MOESM3_ESM.doc

Trace element chemistry of garnets and clinopyroxenes from the Jericho eclogites. All values in ppm (unless otherwise indicated) (DOC 178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Stefano, A., Kopylova, M.G., Cartigny, P. et al. Diamonds and eclogites of the Jericho kimberlite (Northern Canada). Contrib Mineral Petrol 158, 295–315 (2009). https://doi.org/10.1007/s00410-009-0384-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0384-7

Keywords

Navigation