Skip to main content
Log in

Methane fluxes in the southeastern Baltic Sea

  • Short Communication
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

New data from surveys of gas-bearing mud areas in the Gdansk Deep (southeastern Baltic Sea) were collected during four research cruises in 2009–2011. These revealed the presence of seven large pockmarks apart from the three already known, and enabled significant improvement of the existing digital map of gassy mud distribution. Based on geochemical sediment analyses, calculated diffusive methane fluxes from the upper (0–5 cm) seabed layer into near-bottom waters were highest—3.3 mmol/(m2 day)—in pockmark mud, contrasting strongly with the minimum value of 0.004 mmol/(m2 day) observed in typical, background mud. However, fluxes of less than 0.1 mmol/(m2 day) were observed in all sediment types, including pockmarks. In a newer attempt to roughly estimate budgets at a more regional scale, diffusive methane venting amounts to 280 × 106 mmol/day for southeastern Baltic Sea muddy sediments. Elongated pockforms in the southern Gotland Deep, known since the end of the 1980s as pockmarks, had methane concentrations that were similar to those of gassy mud from the Gdansk Basin, and there was no geo-acoustic evidence of considerably increased gas levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blazhchishin A (1998) Paleogeography and evolution of late quaternary sedimentation in the Baltic Sea (in Russian). Yantarnyi skaz, Kaliningrad

    Google Scholar 

  • Blazhchishin A, Eger V (1990) Pockmarks at the Baltic bottom – the indicators of hydrocarbon migration process from the deep layers (in Russian). In: Geodekyan AA, Trotcuk VY, Blazhchishin A (eds) Combined geoacoustic, gasometric and lithogeochemical investigations in the Baltic Sea. Institute of Oceanology RAS, Moscow, pp 93–127

    Google Scholar 

  • Brothers LL, Kelley JT, Belknap DF, Barnhardt WA, Andrews BD, Landon Maynard M (2011) More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: implications for pockmark field longevity. Geo-Mar Lett 31(4):237–248. doi:10.1007/s00367-011-0228-0

    Article  Google Scholar 

  • Clark JF, Washburn L, Schwager Emery K (2010) Variability of gas composition and flux intensity in natural marine hydrocarbon seeps. Geo-Mar Lett 30(3/4):379–388. doi:10.1007/s00367-009-0167-1

    Article  Google Scholar 

  • Dando PR, Hughes JA, Leahy Y, Niven SJ, Taylor LJ, Smith C (1995) Gas venting from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc. Cont Shelf Res 15:913–929. doi:10.1016/0278-4343(95)80002-4

    Article  Google Scholar 

  • Diez R, García-Gil S, Durán R, Vilas F (2007) Gas-charged sediments in the Ría de Arousa: short- to long-term fluctuations? Estuar Coast Shelf Sci 71:467–479. doi:10.1016/j.ecss.2006.08.027

    Article  Google Scholar 

  • Dodonov AE, Namestnikov YG, Yakushova AF (1976) Neotectonics of the southeastern part of the Baltic syncline (in Russian). Moscow State University, Moscow

    Google Scholar 

  • Egorov AV, Rozhkov AN (1997) Scales of the methane diffusive dispersion in the sediments of the Baltic Sea above the geoacoustical anomalies (in Russian). In: Geodekyan AA, Romankevich EA, Trotcuk VY (eds) Geochemistry of the water and sediments of the Baltic Sea in the area of gas craters and geoacoustical anomalies development. Institute of Oceanology RAS, Moscow, pp 135–147

    Google Scholar 

  • Emelyanov EM (2002) Geology of the Gdansk Basin, Baltic Sea (in Russian). Yantarnyi skaz, Kaliningrad

    Google Scholar 

  • Fleischer P, Orsi TH, Richardson MD, Anderson AL (2001) Distribution of free gas in marine sediments: a global overview. Geo-Mar Lett 21(2):103–122. doi:10.1007/s003670100072

    Article  Google Scholar 

  • Floodgate GD, Judd AG (1992) The origins of shallow gas. Cont Shelf Res 10:1145–1156. doi:10.1016/0278-4343(92)90075-U

    Article  Google Scholar 

  • Foucher J-P, Dupré S, Scalabrin C, Feseker T, Harmegnies F, Nouzé H (2010) Changes in seabed morphology, mud temperature and free gas venting at the Håkon Mosby mud volcano, offshore northern Norway, over the time period 2003–2006. Geo-Mar Lett 30(3/4):157–167. doi:10.1007/s00367-010-0193-z

    Article  Google Scholar 

  • Frenzel P, Rothfuss F, Conrad R (1992) Oxygen profiles and methane turnover in a flooded rice microcosm. Biol Fertil Soils 14:84–89. doi:10.1007/BF00336255

    Article  Google Scholar 

  • Geodekyan AA, Trotcuk VY (1990) Pockmarks at the Baltic bottom – the indicators of hydrocarbon migration process from the deep layers (in Russian). In: Geodekyan AA, Trotcuk VY, Blazhchishin A (eds) Combined geoacoustic, gasometric and lithogeochemical investigations in the Baltic Sea. Institute of Oceanology RAS, Moscow, pp 6–11

    Google Scholar 

  • Gülzow W, Rehder G, Schneider B, Schneider v. Deimling J, Sadkowiak B (2011) A new method for continuous measurement of methane and carbon dioxide in surface waters using off-axis integrated cavity output spectroscopy (ICOS): an example from the Baltic Sea. Limnol Oceanogr Methods 9:176–184

    Article  Google Scholar 

  • Gülzow W, Rehder G, Schneider v. Deimling J, Seifert T, Tóth Z (2012) One year of continuous measurements constraining methane emissions from the Baltic Sea to the atmosphere using a ship of opportunity. Biogeosci Discuss 9:9897–9944

    Article  Google Scholar 

  • Iglesias J, Ercilla G, García-Gil S, Judd AG (2010) Pockforms: an evaluation of pockmark-like seabed features on the Landes Plateau, Bay of Biscay. Geo-Mar Lett 30(3/4):207–219. doi:10.1007/s00367-009-0182-2

    Article  Google Scholar 

  • Iversen N, Jørgensen BB (1993) Diffusion-coefficients of sulfate and methane in marine sediments – influence of porosity. Geochim Cosmochim Acta 57(3):571–578. doi:10.1016/0016-7037(93)90368-7

    Article  Google Scholar 

  • Judd AG, Hovland M (2007) Seabed fluid flow: the impact on geology, biology and the marine environment. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kostecki R, Janczak-Kostecka B (2012) Holocene environmental changes in the south-western Baltic Sea reflected by the geochemical data and diatoms of the sediment cores. J Mar Syst. doi:10.1016/j.jmarsys.2012.06.005

  • Leipe T, Tauber F, Vallius H, Virtasalo J, Uścinowicz S, Kowalski N, Hille S, Lindgren S, Myllyvirta T (2011) Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Mar Lett 31(3):175–188. doi:10.1007/s00367-010-0223-x

    Article  Google Scholar 

  • Marinaro G, Etiope G, Lo Bue N, Favali P, Papatheodorou G, Christodoulou D, Furlan F, Gasparoni F, Ferentinos G, Masson M, Rolin J-F (2006) Monitoring of a methane-seeping pockmark by cabled benthic observatory (Patras Gulf, Greece). Geo-Mar Lett 26(5):297–302. doi:10.1007/s00367-006-0040-4

    Article  Google Scholar 

  • Mojski JE (1995) Structural conditions of Pleistocene ice-sheet development. Geological atlas of the Southern Baltic, 1:500 000. Sopot, Warsaw, pp 20–22

  • Müller H, von Dobeneck T, Nehmiz W, Hamer K (2011) Near-surface electromagnetic, rock magnetic, and geochemical fingerprinting of submarine freshwater seepage at Eckernförde Bay (SW Baltic Sea). Geo-Mar Lett 31(2):123–140. doi:10.1007/s00367-010-0220-0

    Article  Google Scholar 

  • Newman KR, Cornier M-H, Weissel JK, Driscoll NW, Kastner M, Solomon EA, Robertson G, Hill JC, Singh H, Camilli R, Eustice R (2007) Active methane venting observed at giant pockmarks along the U.S. mid-Atlantic shelf break. Earth Planet Sci Lett 267:341–352. doi:10.1016/j.epsl.2007.11.053

    Article  Google Scholar 

  • Pimenov NV, Ulyanova MO, Kanapatsky TA, Veslopolova EF, Sigalevich PA, Sivkov VV (2010) Microbially mediated methane and sulfur cycling in pockmark sediments of the Gdansk Basin, Baltic Sea. Geo-Mar Lett 30(3/4):439–448. doi:10.1007/s00367-010-0200-4

    Article  Google Scholar 

  • Sakagami H, Takahashi N, Hachikubo A, Minami H, Yamashita S, Shoji H, Khlystov O, Kalmychkov G, Grachev M, De Batist M (2012) Molecular and isotopic composition of hydrate-bound and dissolved gases in the southern basin of Lake Baikal, based on an improved headspace gas method. Geo-Mar Lett. doi:10.1007/s00367-012-0294-y

  • Schmale O, Schneider von Deimling J, Gülzow W, Nausch G, Waniek JJ, Rehder G (2010) Distribution of methane in the water column of the Baltic Sea. Geophys Res Lett 37:L12604. doi:10.1029/2010GL043115

    Article  Google Scholar 

  • Schulz HD (2000) Quantification of early diagenesis: dissolved constituents in marine pore water. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 85–128

    Chapter  Google Scholar 

  • Sivkov V, Gorbatskiy V, Kuleshov A, Zhurov Y (2002) Muddy contourites in the Baltic Sea. In: Stow D, Pudsey C, Howe J, Faugères J-C, Viana AR (eds) Deep-water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics. Geol Soc Lond Mem 22:121–136

  • Sviridov NI (1990) Geological and physical nature of geoacoustical anomalies in the upper part of the sedimentary cover of the Baltic Sea (in Russian). In: Geodekyan AA, Trotcuk VY, Blazhchishin A (eds) Combined geoacoustic, gasometric and lithogeochemical investigations in the Baltic Sea. Institute of Oceanology RAS, Moscow, pp 47–56

    Google Scholar 

  • Thießen O, Schmidt M, Theilen F, Schmitt M, Klein G (2006) Methane formation and distribution of acoustic turbidity in organic-rich surface sediments in the Arkona Basin, Baltic Sea. Cont Shelf Res 26:2469–2483. doi:10.1016/j.csr.2006.07.020

    Article  Google Scholar 

  • Vardaro MF, MacDonald IR, Bender LC, Guinasso NL Jr (2006) Dynamic processes observed at a gas hydrate outcropping on the continental slope of the Gulf of Mexico. Geo-Mar Lett 26(1):6–15. doi:10.1007/s00367-005-0010-2

    Article  Google Scholar 

  • Wever TF, Luhder R, Voss H, Knispel U (2006) Potential environmental control of free shallow gas in the seafloor of Eckernförde Bay, Germany. Mar Geol 225:1–4. doi:10.1016/j.margeo.2005.08.005

    Article  Google Scholar 

  • Whiticar MJ (2002) Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and fresh water seepages in Eckernförde Bay. Mar Geol 182:29–53. doi:10.1016/S0025-3227(01)00227-4

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the RFBR 11-05-01093-а and 08-04-92422-BONUS_а. We are grateful to Prof. Bo Barker Jørgensen and Dr. José Mogollón for their assistance in diffusive flux calculations, to Alexander Krek for his help, and to the crews of R/V Professor Shtokman and Shelf for their support during the cruises. Also acknowledged are constructive assessments and comments by Dr. T. Missiaen, an anonymous reviewer, and the editors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Ulyanova.

Additional information

Responsible guest editors: M. De Batist and O. Khlystov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulyanova, M., Sivkov, V., Kanapatskij, T. et al. Methane fluxes in the southeastern Baltic Sea. Geo-Mar Lett 32, 535–544 (2012). https://doi.org/10.1007/s00367-012-0304-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-012-0304-0

Keywords

Navigation