Skip to main content

Quantification of Early Diagenesis: Dissolved Constituents in Marine Pore Water

  • Chapter
Marine Geochemistry

Abstract

A chapter on the pore water of sediments and the processes of early diagenesis, reflected by the concentration profiles therein, can certainly be structured in different ways. One possibility is, for example, to start with the sample-taking strat egies, followed by the analytical treatment of the samples, then a model presentation to substantiate the processes, and finally a quantitative evaluation of the measured profiles with regard to material fluxes and reaction rates. The reader who would prefer this sequence is recommended to begin with the Sections 3.3, 3.4, 3.5 and to consult the Sections 3.1 and 3.2 later. However, in our opinion, marine geochemistry departed from its initial development stage of sample collection and anlysis some years ago. This book is therefore written with a different structure from earlier texts. The well understood theoretical knowledge on concentration profiles has to be introduced from the beginning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R.C. and DeMaster, D.J., 1984. Estimates of particle flux and reworking at the deep-sea floor using 234Th/238U disequilibrium. Earth and Planetary Science Letters, 67: 308–318.

    Article  Google Scholar 

  • Aller, R.C, 1988. Benthic fauna and biogeochemical processes in marine sediments: The role of burrow structures. In: Blackburn, T.H. and Sorensen, J. (eds), Nitrogen cycling coastal marine environments. SCOPE. Wiley & Sons Ltd., pp. 301–338.

    Google Scholar 

  • Aller, R.C, 1990. Bioturbation and manganese cycling in hemipelagic sediments. Phil. Trans. R. Soc. Lond., 331: 51–68.

    Article  Google Scholar 

  • Aller, R.C, 1994. The sedimentary Mn cycle in Long Island Sound: Its role as intermediate oxidant and the influenceof bioturbation, 02, and Corg flux on diagenetic reaction balances. Journal of Marine Research, 52: 259–293.

    Article  Google Scholar 

  • Archer, D., Emerson, S. and Smith, C.R., 1989. Direct measurements of the diffusive sublayer at the deep sea floor using oxygen microelectrodes. Nature, 340: 623–626.

    Article  Google Scholar 

  • Archer, D. and Devol, A., 1992. Benthic oxygen fluxes on the Washington shelf and slope: A comparison of in situ microelectrode and chamber flux measurements. Limnology and Oceanography, 37: 614 — 629.

    Article  Google Scholar 

  • Archie, G.E., 1942. The electrical resistivity log as an aid in determinig some reservoir characteristics. Trans. Am. Inst. Min. Metall., 146: 54 — 62.

    Google Scholar 

  • Berner, R.A., 1980. Early diagenesis: A theoretical approach. Princton Univ. Press, Princton, NY, 241 pp.

    Google Scholar 

  • Boudreau, B.P., 1997. Diagenetic models and their impletation: modelling transport and reactions in aquatic sediments. Springer, Berlin, Heidelberg, NY, 414 pp.

    Book  Google Scholar 

  • Cornwell, J.C and Morse, J.W., 1987. The characterization of iron sulfide minerals in anoxic marine sediments. Marine Chemistry, 22: 193–206.

    Article  Google Scholar 

  • Davison, W., Grime, G.W., Morgan, J.A.W. and Clarke, K.,1991. Distribution of dissolved iron in sediment pore waters at submillimetre resolution. Nature, 352: 323–324.

    Article  Google Scholar 

  • Davison, W. and Zhang, H., 1994. In situ speciation measurements of trace components in natural waters using thin-film gels. Nature, 367: 546–548.

    Article  Google Scholar 

  • Davison, W., Zhang, H. and Grime, G.W., 1994. Performance characteristics of gel probes used for measuring the chemistry of pore waters. Environmental Science & Technology, 28: 1623–1632.

    Article  Google Scholar 

  • Davison, W., Fones, G.R. and Grime, G.W., 1997. Dissolved metals in surface sediment and a microbial mat at 100 urn resolution. Nature, 387: 885–888.

    Article  Google Scholar 

  • Davison, W., Fones, G., Harper, M., Teasdale, P. and Zhang, H., in press. Dialysis, DET and DGT: In situ diffusional techniques for studying water, sediments and soils. In: Buffle, J. and Horvai, G. (eds), In situ chemical measurements in aquatic systems. Wiley & Sons.

    Google Scholar 

  • De Lange, G.J., 1988. Geochemical and early diagenetic aspects of interbedded pelagic/turbiditic sediments in two North Atlantic abyssal plains. Geologica Ultraiectina, Mededelingen van het Instituut vor Aardwetenschappen der Rijksuniversiteit te Utrecht, 57, 190 pp.

    Google Scholar 

  • De Lange, G.J., Cranston, R.E., Hydes, D.H. and Boust, D., 1992. Extraction of pore water from marine sediments: A review of possible artifacts with pertinent examples from the North Atlantic. Marine Geology, 109: 53–76.

    Article  Google Scholar 

  • De Lange, G.J., 1992a. Shipboard routine and pressure-filtration system for pore-water extraction from suboxic sediments. Marine Geology, 109: 77–81.

    Article  Google Scholar 

  • De Lange, G.J., 1992b. Distribution of exchangeable, fixed, organic and total nitrogen in interbedded turbiditic/pelagic sediments of the Madeira Abyssal Plain, eastern North Atlantic. Marine Geology, 109: 95–114.

    Article  Google Scholar 

  • De Lange, G.J., 1992c. Distribution of various extracted phosphorus compounds in the interbedded turbiditic/pelagic sediments of the Madeira Abyssal Plain, eastern North Atlantic. Marine Geology, 109: 115–139.

    Article  Google Scholar 

  • Dicke, M., 1986. Vertikale Austauschkoeffizienten und PorenwasserfluB an der Sediment/Wasser Grenzflache. Berichte aus dem Institut fiir Meereskunde an der Univ. Kiel, 155, pp 1–165.

    Google Scholar 

  • Enneking, C, Hensen, C, Hinrichs, S., Niewohner, C, Siemer, S. and Steinmetz, E., 1996. Poor water chemistry. In: Schulz, H.D. and cruise participants (eds), Report and preliminary results of Meteor cruise M34/2 Walvis Bay-Walvis Bay, 29.01.1996 — 18.02.1996. Berichte, Fachbereich Geowissenschaften, Univ. Bremen, 78, pp 87–102.

    Google Scholar 

  • Forster, S., Huettel, M. and Ziebis, W., 1996. Impact of boundary layer flow velocity on oxygen utilisation in coastal sediments. Mar. Ecol. Prog. Ser., 143: 173–185.

    Article  Google Scholar 

  • Fossing, H. and Jorgensen, B.B., 1990. Oxidation and reduction of radiolabeled inorganic sulfur compounds in an es-tuarine sediment, Kysing Fjord, Denmark. Geochimica et Cosmochimica Acta, 54: 2731–2742.

    Article  Google Scholar 

  • Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D. and Hartman, B., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43: 1075–1090.

    Article  Google Scholar 

  • Glud, R.N., Gundersen, J.K., Jorgensen, B.B., Revsbech, N.P and Schulz, H.D., 1994. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Research, 41: 1767–1788.

    Article  Google Scholar 

  • Grasshoff, K., Kremling, K. and Ehrhardt, M., 1999. Methods of Seawater Analysis. Wiley-VCH, Weinheim, NY, 600 pp.

    Book  Google Scholar 

  • Gundersen, J.K. and Jorgensen, B.B., 1990. Microstructure of diffusive boundry layer and the oxygen uptake of the sea floor. Nature, 345: 604–607.

    Article  Google Scholar 

  • Haese, R.R., 1997. Beschreibung und Ouantifizierung fruhdiagnetischer Reaktionen des Eisens in Sedimenten desSudatlantiks. Berichte, Fachbereich Geowissenschaften, Univ. Bremen, 99, 118 pp.

    Google Scholar 

  • Hall, P.O.J, and Aller, R.C, 1992. Rapid, small-volume, flow injection analysis for SC02 and NH4+ in marine and freshwaters. Limnology and Oceanography, 35: 1113- 1119.

    Article  Google Scholar 

  • Hamer, K. and Seger, R., 1994. Anwendung des Modells CoTAM zur Simulation von Stofftransport und geochemischen Reaktionen. Ernst und Sohn, Berlin, 186 pp.

    Google Scholar 

  • Hensen, C, Landenberger, H., Zabel, M., Gundersen, J.K., Glud, R.N. and Schulz, H.D., 1997. Simulation of early diagenetic processes in continental slope sediments in Southwest Africa: The computer model CoTAM tested. Marine Geology, 144: 191–210.

    Article  Google Scholar 

  • Holby, O. and Riess, W., 1996. In Situ Oxygen Dynamics and pH-Profiles. In: Schulz, H.D. and cruise participants (eds), Report and preliminary results of Meteor cruise M34/2 Walvis Bay-Walvis Bay, 29.01.1996 — 18.02.1996. Berichte, Fachbereich Geowissenschaften, Univ. Bremen, 78, pp. 85–87.

    Google Scholar 

  • Huettel, M., Ziebis, W. and Forster, S., 1996. Flow-induced uptake of particulate matter in permeable sediments. Limnology and Oceanography, 41: 309–322.

    Article  Google Scholar 

  • Iversen, N. and Jorgensen, B.B., 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography, 30: 944–955.

    Article  Google Scholar 

  • Iversen, N. and Jorgensen, B.B., 1993. Diffusion coefficients of sulfate and methane in marine sedimets: Influence of porosity. Geochimica et Cosmochimica Acta, 57: 571- 578.

    Article  Google Scholar 

  • Jahnke, R.A., Heggie, D., Emerson, S. and Grundmanis, V., 1982. Pore waters of the central Pacific Ocean: nutrient results. Earth and Planetary Science Letters, 61: 233–256.

    Article  Google Scholar 

  • Jahnke, R.A., 1988. A simple, reliable, and inexpensive pore-water sampler. Limnology and Oceanography, 33: 483–487.

    Article  Google Scholar 

  • Jahnke, R.A. and Christiansen, M.B., 1989. A free-vehicle benthic chamber instrument for sea floor studies. Deep-Sea Research, 36: 625–637.

    Article  Google Scholar 

  • Jorgensen, B.B. and Revsbech, N.P., 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnology and Oceanography, 30: 111–122.

    Article  Google Scholar 

  • Jorgensen, B.B., Bang, M. and Blackburn, T.H., 1990. Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition. Marine Ecology Progress Series, 59: 39–54.

    Article  Google Scholar 

  • Kinzelbach, W., 1986. Goundwater Modeling-An Introducion with Sample Programs in BASIC. Elsevier, Amsterdam, Oxford, NY, Tokyo, 333 pp.

    Google Scholar 

  • Klimant, I., Meyer, V. and Kiihl, M., 1995. Fiber-oxic oxygen microsensors, a new tool in aquatic biology. Limnology and Oceanography, 40: 1159–1165.

    Article  Google Scholar 

  • Kolling, M., 1986. Vergleich verschiedener Methoden zur Bestimmung des Redoxpotentials naturlicher Gewasser. Meyniana, 38: 1–19.

    Google Scholar 

  • McDuff, R.E. and Ellis, R.A., 1979. Determining diffusion coefficients in marine sediments: A laboratory study of the validity of resistivity technique. American Journal of Science, 279: 66–675.

    Article  Google Scholar 

  • Niewohner, C, Hensen, C, Kasten, S., Zabel, M. and Schulz, H.D., 1998. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochimica et Cosmochimica Acta, 62: 455–464.

    Article  Google Scholar 

  • Redfield, A.C., 1958. The biological control of chemical factors in the environment. Am. Sci., 46: 206–226.

    Google Scholar 

  • Reeburgh, W.S., 1967. An improved interstitial water sampler. Limnology and Oceanography, 12: 163–165.

    Article  Google Scholar 

  • Reimers, C.E., 1987. An in situ microprofiling instrument for measuring interfacial pore water gradients: methods and oxygen profiles from the North Pacific Ocean. Deep-Sea Research, 34: 2019–2035.

    Article  Google Scholar 

  • Revsbech, N.P., Jorgensen, B.B. and Blackburn, T.H., 1980. Oxygen in the sea bottom measured with a microelektrode. Science, 207: 1355–1356.

    Google Scholar 

  • Revsbech, N.P. and Jorgensen, B.B., 1986. Microelectrodes: Their use in microbial ecology. Advances in Microbial Ecology, 9: 293–352.

    Google Scholar 

  • Revsbech, N.P., 1989. An oxygen microsensor with a guard cathode. Limnology and Oceanography, 34: 474–478.

    Article  Google Scholar 

  • Saager, P.M., Sweerts, J.P. and Ellermeijer, H.J., 1990. A simple pore-water sampler for coarse, sandy sediments of low porosity. Limnology and Oceanography., 35: 747–751.

    Article  Google Scholar 

  • Sarazin, G., Michard, G. and Prevot, F., 1999. A rapid and accurate spectroscopic for alkalinity measurements in sea water samples. Wat. Res., 33: 290–294.

    Article  Google Scholar 

  • Sayles, F.L., Mangelsdorf, P.C., Wilson, T.R.S. and Hume, D.N., 1976. A sampler for the in situ collection of marine sedimentary pore waters. Deep-Sea Research, 23: 259–264.

    Google Scholar 

  • Schliiter, M., 1990. Zur Fruhdiagenese von organischem Kohlenstoff und Opal in Sedimenten des sudlichen und ostlichen Weddelmeeres. Berichte zur Polarforchung, Bremerhaven, 73, 156 pp.

    Google Scholar 

  • Schultheiss, P.J. and McPhail, S.D., 1986. Direct indication of pore-water advection from pore pressure measurements in Madeira Abyssal Plain sediments. Nature, 320: 348–350.

    Article  Google Scholar 

  • Schulz, H.D., Dahmke, A., Schinzel, U., Wallmann, K. and Zabel, M., 1994. Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic. Geochimica et Cosmochimica Acta, 58: 2041–2060.

    Article  Google Scholar 

  • Seeburger, I. and Kass, W., 1989. Grundwasser — Redoxpontentialmessung und Probennahmegerate. DVWK-Schriften, Bonn, 84, 182 pp.

    Google Scholar 

  • Smith, K.L.J, and Teal, J.M., 1973. Deep-sea benthic community respiration: An in-situ study at 1850 meters. Science, 179: 282–283.

    Article  Google Scholar 

  • Tengberg, A., De Bovee, E, Hall, P., Berelson, W., Chadwick, D., Ciceri, G., Crassous, P., Devol, A., Emerson, S., Gage, J., Glud, R., Graziottini, E, Gundersen, J., Hammond, D., Helder, W., Hinga, K., Holby, O., Jahnke, R., Khripounoff, A., Lieberman, S., Nuppenau, V., Pfannkuche, O., Reimers, C, Rowe, G., Sahami, A., Sayles, E, Schurter, M., Smallman, D., Wehrli, B. and De Wilde, P., 1995. Benthic chamber and profiling landers in oceanography — A review of design, technical solutions and function. Progress in Oceanography, 35: 253–292.

    Article  Google Scholar 

  • Tromp, T.K., van Cappellen, P. and Key, R.M., 1995. A global model for the early diagenetisis of organic carbon and organic phosphorus in marine sediments. Geochimica et Cosmochimica Acta, 59: 1259–1284.

    Article  Google Scholar 

  • Van Cappellen, P. and Wang, Y., 1996. Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. American Journal of Science, 296: 197–243.

    Article  Google Scholar 

  • Ziebis, W. and Forster, S., 1996. Impact of biogenic sediment topography on oxygen fluxes in permeable seabeds. Mar. Ecol. Prog. Ser., 140: 227–237.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulz, H.D. (2000). Quantification of Early Diagenesis: Dissolved Constituents in Marine Pore Water. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04242-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04244-1

  • Online ISBN: 978-3-662-04242-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics