Skip to main content
Log in

Changes in seabed morphology, mud temperature and free gas venting at the Håkon Mosby mud volcano, offshore northern Norway, over the time period 2003–2006

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The Håkon Mosby mud volcano is a 1.5-km-diameter geological structure located on the Southwest Barents Sea slope at a water depth of 1,270 m. High-definition seabed mapping of the mud volcano has been carried out in 2003 and 2006. A comparative analysis of the bathymetry and backscatter maps produced from the two surveys shows subtle morphological changes over the entire crater of the mud volcano, interpreted to be the consequence of mud eruption events. Mud temperature measurements point to a persistently warm mud at shallow depth in the crater. This is explained by upward fluid advection, rather than conductive cooling of mud flows. The small-scale spatial variability in the temperature distribution may be related to mud outflows or changes in the fluid flow regime. Furthermore, the locations of free gas venting observed in 2006 were found to differ from those of 2003. Our observations of overall similar topographic profiles across the mud volcano in 2003 and 2006 suggest that eruption events would have been modest. Nevertheless, the data bring evidence of significant change in activity even over short time intervals of only 3 years. This may be a characteristic shared by other submarine mud volcanoes, notably those considered to be in a quiescent stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aliyev AA, Guliyev IS, Belov IS (2002) Catalogue of recorded eruptions of mud volcanoes in Azerbaijan (for period of years 1810–2001). Nafta Press, Baku

    Google Scholar 

  • Berger L, Durand C, Marchalot C (2007) Movies + User Manual version 4.4. Ifremer, Paris

  • de Beer D, Sauter E, Niemann H, Kaul N, Foucher J-P, Witte U, Schlüter M, Boetius A (2006) In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano. Limnol Oceanogr 51:1315–1331

    Article  Google Scholar 

  • Delisle G, von Rad U, Andruleit H, Von Daniels CH, Tabrez AR, Inam A (2002) Active mud volcanoes on- and offshore eastern Makran, Pakistan. Int J Earth Sci 91:93–110

    Article  Google Scholar 

  • Deville E, Guerlais SH (2009) Cyclic activity of mud volcanoes: evidences from Trinidad (SE Caribbean). Mar Petrol Geol 26:1681–1691

    Article  Google Scholar 

  • Dimitrov LI (2002) Mud volcanoes - the most important pathway for degassing deeply buried sediments. Earth-Sci Rev 59:49–76

    Article  Google Scholar 

  • Edy C, Bisquay H, Foucher J-P, Opderbecke J, Simeoni P, Allais A-G, Beyer A, Jerosch K, Rathlau R (2004) Microbathymetry of the Håkon Mosby mud volcano off northern Norway: results of a ROV-borne multibeam survey. Geophys Res Abstr 6:4619

    Google Scholar 

  • Etiope G, Milkov AV (2004) A next estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environ Geol 46:997–1002

    Article  Google Scholar 

  • Feseker T, Foucher J-P, Harmegnies F (2008) Fluid flow or mud eruptions? Sediment temperature distributions on Håkon Mosby mud volcano, SW Barents Sea slope. Mar Geol 247:194–207

    Article  Google Scholar 

  • Feseker T, Dählmann A, Foucher J-P, Harmegnies F (2009) In-situ sediment temperature measurements and geochemical porewater data suggest highly dynamic fluid flow at Isis mud volcano, eastern Mediterranean Sea. Mar Geol 261:128–137

    Article  Google Scholar 

  • Foucher J-P, Westbrook GK, Boetius A, Ceramicola S, Dupré S, Mascle J, Mienert J, Pfannkuche O, Pierre C, Praeg D (2009) Structure and drivers of hydrocarbon seep ecosystems in the European seas: an overview from HERMES results. Oceanography 22:92–109

    Article  Google Scholar 

  • Greinert J, Nützel B (2004) Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps. Geo-Mar Lett 24(2):75–85. doi:10.1007/s00367-003-0165-7

    Article  Google Scholar 

  • Herbin JP, Saint-Germès M, Maslakov N, Shnyukov EF, Vially R (2008) Oil seeps from the “Boulganack” mud volcano in the Hertch Peninsula (Ukraine-Crimea). Study of the mud and the gas; inferences for the petroleum potential. Oil Gas Sci Technol, Revue IFP 63:609–628

    Article  Google Scholar 

  • Hjelstuen BO, Eldholm O, Faleide JI, Vogt PR (1999) Regional setting of Håkon Mosby Mud Volcano, SW Barents Sea margin. Geo-Mar Lett 19(1/2):22–28. doi:10.1007/s003670050089

    Article  Google Scholar 

  • Jakobsson M, Macnab R, Mayer L, Anderson R, Edwards M, Hatzky JR, Schenke HW, Johnson P (2008) An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys Res Lett 35:L07602. doi:10.1029/2008GL033520

    Article  Google Scholar 

  • Jerosch K, Schlüter M, Foucher J-P, Allais A-G, Klages M, Edy C (2007) Spatial distribution of mud flows, chemoautotrophic communities, and biogeochemical habitats at Håkon Mosby Mud Volcano. Mar Geol 243:1–17

    Article  Google Scholar 

  • Judd AG, Hovland M (2007) Seabed fluid flow. The impact on geology, biology and the marine environment. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kaul N, Foucher J-P, Heesemann M (2006) Estimating mud expulsion rates from temperature measurements on Håkon Mosby Mud Volcano, SW Barents Sea. Mar Geol 229:1–14

    Article  Google Scholar 

  • Kopf AJ (2002) Significance of mud volcanism. Rev Geophys 40(2):1005. doi:10.1029/2000RG000093

    Article  Google Scholar 

  • Mazzini A, Svensen H, Akhmanov GG, Aloisi G, Planke S, Malthe-Sørenssen A, Istadi B (2007) Triggering and dynamic evolution of the LUSI mud volcano, Indonesia. Earth Planet Sci Lett 261:375–388

    Article  Google Scholar 

  • Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167:29–42

    Article  Google Scholar 

  • Milkov A, Vogt P, Cherkashev G, Ginsburg G, Chernova N, Andriashev A (1999) Sea-floor terrains of Håkon Mosby Mud Volcano as surveyed by deep-tow video and still photography. Geo-Mar Lett 19(1/2):38–47. doi:10.1007/s003670050091

    Article  Google Scholar 

  • Milkov AV, Vogt PR, Crane K, Lein AY, Sassen R, Cherkashev GA (2004) Geological, geochemical, and microbial processes at the hydrate-bearing Håkon Mosby mud volcano: a review. Chem Geol 205:347–366

    Article  Google Scholar 

  • Perez-Garcia C, Feseker T, Mienert J, Berndt C (2009) The Håkon Mosby mud volcano: 330 000 years of focused fluid flow activity at the SW Barents Sea slope. Mar Geol 262:105–115

    Article  Google Scholar 

  • Rehder G, Brewer PW, Peltzer ET, Friederich G (2002) Enhanced lifetime of methane bubble streams within the deep ocean. Geophys Res Lett 29:1731. doi:10.1029/2001GL013966

    Article  Google Scholar 

  • Sauter EJ, Muyakshin SI, Charlou J-L, Schlüter M, Boetius A, Jerosch K, Damm E, Foucher J-P, Klages M (2006) Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth Planet Sci Lett 243:354–365

    Article  Google Scholar 

  • Stanton TK (1989) Simple approximate formulas for backscattering of sound by spherical and elongated objects. J Acoust Soc Am 86:1499–1510

    Article  Google Scholar 

  • Vanreusel A, Andersen AC, Boetius A, Connelly D, Cunha MR, Decker C, Hilario A, Kormas KA, Maignien L, Olu K, Pachiadaki M, Ritt B, Rodrigues C, Sarrazin J, Tyler P, Van Gaever S, Vanneste H (2009) Biodiversity of cold seep ecosystems along the European margins. Oceanography 22:110–127

    Article  Google Scholar 

  • Vogt PR, Gardner J, Crane K (1999) The Norwegian-Barents-Svalbard (NBS) continental margin: introducing a natural laboratory of mass wasting, hydrates and ascent of sediment, pore water, and methane. Geo-Mar Lett 19(1/2):2–21. doi:10.1007/s003670050088

    Article  Google Scholar 

  • Weill A, Scalabrin C, Diner N (1993) MOVIES-B: an acoustic detection description software. Application to shoal species classification. Aquat Living Resour 6:255–267

    Article  Google Scholar 

Download references

Acknowledgements

The Vicking cruise (2006) of the R/V Pourquoi pas? using the Victor ROV was carried out in the frame of the HERMES Project funded by the European Commission’s Framework Sixth Programme, under the priority Sustainable Development, Global Change and Ecosystems, EC Contract No. GOCE-CT-2005-511234. We acknowledge the efficient assistance of the Master and Crew of the R/V Pourquoi pas? and of the Victor ROV team during the Vicking cruise. We thank Ifremer colleagues Alain Normand for processing the multibeam data, and Catherine Satra and Marie-Claire Fabri for their help in the development and use of the GIS. We are grateful to Doug Masson and George Delisle for helpful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Foucher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foucher, JP., Dupré, S., Scalabrin, C. et al. Changes in seabed morphology, mud temperature and free gas venting at the Håkon Mosby mud volcano, offshore northern Norway, over the time period 2003–2006. Geo-Mar Lett 30, 157–167 (2010). https://doi.org/10.1007/s00367-010-0193-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-010-0193-z

Keywords

Navigation