Skip to main content
Log in

Particulate organic carbon (POC) in surface sediments of the Baltic Sea

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

In this study, particulate organic carbon (POC) contents and their distribution pattern in surficial sediments of the Baltic Sea are presented for 1,471 sampling stations. POC contents range from approx. 0.1% in shallow sandy areas up to 16% in deep muddy basins (e.g. Gotland Basin). Some novel relationships were identified between sediment mass physical properties (dry bulk density (DBD), grain size) and POC levels. Notably, the highest POC concentrations (about 10–17 mg cm–3) occur in sandy mud to mud (60–100% mud content) with intermediate POC contents of about 3–7% and DBDs of 0.1–0.4 g cm–3. Areas with this range in values seem to represent the optimum conditions for POC accumulation in the Baltic Sea. The maximum POC contents (8–16%) are found in fluid mud of the central Baltic Sea characterized by extremely low DBDs (<0.1 g cm–3) and moderate POC concentrations (4–7 mg cm–3). Furthermore, sediment mass accumulation rates (MAR), based on 210Pb and 137Cs measurements and available for 303 sites of the Baltic Sea, were used for assessing the spatial distribution of POC burial rates. Overall, these vary between 14 and 35 g m–2 year–1 in the mud depositional areas and, in total, at least 3.5 (±2.9) Mt POC are buried annually. Distribution patterns of POC contents and burial rates are not identical for the central Baltic Sea because of the low MAR in this area. The presented data characterize Baltic Sea sediments as an important sink for organic carbon. Regional differences in organic carbon deposition can be explained by the origin and transport pathways of POC, as well as the environmental conditions prevailing at the seafloor (morphology, currents, redox conditions). These findings can serve to improve budget calculations and modelling of the carbon cycle in this large brackish-water marginal sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alanen U, Andersen JH, Bendtsen J, Bergström U, Dahl K, Dinesen G, Erichsen A, Elhammer A, Geitner K, Hermansen B, Holmberg J, Kotilainen A, Leth J, Lindberg T, Lindeberg G, Nyberg J, Reijonen A, Riabtchouk D, Sparrevohn C, Sørensen T, Söderkvist J, Thougaard L, Vestergaard L, Zetterlund S (2007) Seabed sediments. In: Al-Hamdani Z, Reker J (eds) Towards marine landscapes in the Baltic Sea. BALANCE interim report #10. http://balance-eu.org/

  • Alenius P, Myrberg K, Nekrasov A (1998) The physical oceanography of the Gulf of Finland: a review. Boreal Environ Res 3:97–125

    Google Scholar 

  • Alvi K, Winterhalter B (2001) Authigenic mineralization in the temporally anoxic Gotland Deep, the Baltic Sea. Baltica 14:74–83

    Google Scholar 

  • Berger WH, Smetacek VS, Wefer G (eds) (1989) Ocean productivity—present and past. Wiley, Chichester

    Google Scholar 

  • Blazhchishin AI (1976) General chemical components in bottom sediments (in Russian). In: Gudelis VK, Emelyanov EM (eds) Geology of the Baltic Sea. Vilnius, Mokslas, pp 155–187

    Google Scholar 

  • Blazhchishin AI, Pustelnikov OS (1977) Biogenic components (Corg and SiO2) in water, suspended matter and bottom sediments of the Baltic Sea (in Russian). Baltica 6:161–172

    Google Scholar 

  • Blomqvist S, Heiskanen AS (2001) The challenge of sedimentation in the Baltic Sea. In: Wulff F, Rahm L, Larsson P (eds) A system analysis of the Baltic Sea. Ecological Studies, vol 148. Springer, Berlin, pp 211–227

    Google Scholar 

  • Bohling B (2003) Untersuchungen zur Mobilität natürlicher und anthropogener Sedimente in der Mecklenburger Bucht. PhD Thesis, University of Greifswald

  • Carman R, Rahm L (1996) Early diagenesis and chemical characteristics of interstitial water and sediments in the Baltic proper deep deposition bottoms. J Sea Res 37:25–47

    Article  Google Scholar 

  • Carstensen J, Conley DJ, Andersen JH, Ærtebjerg G (2006) Coastal eutrophication and trend reversal: a Danish case study. Limnol Oceanogr 51:398–408

    Article  Google Scholar 

  • Christiansen C, Edelvang K, Emeis K-C, Graf G, Jähmlich S, Kozuch J, Laima M, Leipe T, Löffler A, Lund-Hansen L-C, Miltner A, Pazdro K, Pempkowiak J, Shimmield G, Shimmield T, Smith J, Voss M, Witt G (2002) Material transport from the nearshore to the basinal environment in the southern Baltic Sea, I: Processes and mass estimates. J Mar Systems 35:133–150

    Article  Google Scholar 

  • Christoffersen PL, Christiansen C, Jensen JB, Leipe T, Hille S (2007) Depositional conditions and organic matter distribution in the Bornholm Basin, Baltic Sea. Geo-Mar Lett 27(5):325–338. doi:10.1007/s00367-007-0054-6

    Article  Google Scholar 

  • Conley DJ, Carstensen J, Ærtjebjerg G, Christensen PB, Dalsgaard T, Hansen JLS, Josefson AB (2007) Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol Appl 17:165–184

    Article  Google Scholar 

  • Danielsson A, Carman R, Rahm L, Aigars J (1998) Spatial estimation of nutrient distributions in the Gulf of Riga sediments using cokriging. Estuarine Coastal Shelf Sci 46:713–722

    Article  Google Scholar 

  • Delafontaine MT, Flemming BW, Bartholomä A (2000) Mass balancing the seasonal turnover of POC in mud and sand on a back-barrier tidal flat (southern North Sea). In: Flemming BW, Delafontaine MT, Liebezeit G (eds) Muddy coast dynamics and resource management. Proceedings in Marine Science, vol 2. Amsterdam, Elsevier, pp 107–124

    Chapter  Google Scholar 

  • Eckhell J, Jonsson P, Meili M, Carman R (2000) Storm influence on the accumulation and lamination of sediments in deep areas of the northwestern Baltic Proper. Ambio 29:238–245

    Google Scholar 

  • Emeis K-C, Struck U, Leipe T, Pollehne F, Kunzendorf H, Christiansen C (2000) Changes in the C, N, P burial rates in some Baltic Sea sediments over the last 150 years - relevance to P regeneration rates and the phosphorus cycle. Mar Geol 167:43–59

    Article  Google Scholar 

  • Emeis K-C, Christiansen C, Edelvang K, Jähmlich S, Kozuch J, Laima M, Leipe T, Lund-Hansen L-C, Löffler A, Miltner A, Pazdro K, Pempkowiak J, Pollehne F, Shimmield T, Voss M, Witt G (2002) Material transport from the nearshore to the basinal environment in the southern Baltic Sea, II: Synthesis of data on origin and properties of material. J Mar Systems 35:151–168

    Article  Google Scholar 

  • Emelyanov EM (1988) Biogenic sedimentation in the Baltic Sea and its consequences. In: Winterhalter B (ed) The Baltic Sea. Geologian Tutkimuskus, Espo, pp 127–136

    Google Scholar 

  • Emelyanov EM (1995) Baltic Sea: geology, geochemistry, paleoceanography, pollution. Yantarny Skaz, Kaliningrad

    Google Scholar 

  • Emelyanov EM (2001) Biogenic components and elements in sediments of the Central Baltic and their redistribution. Mar Geol 172:23–41

    Article  Google Scholar 

  • Emelyanov EM (ed) (2002) Geology of the Gdansk Basin, Baltic Sea. Yantarny Skaz, Kaliningrad

    Google Scholar 

  • Emelyanov E, Christiansen C, Michelsen O (eds) (1995) Geology of the Bornholm Basin. Aarhus University, Department of Earth Sciences, Aarhus Geoscience, vol 5

  • Feistel R, Nausch G, Wasmund N (eds) (2008) State and evolution of the Baltic Sea, 1952-2005: a detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment. Wiley, Chichester

    Google Scholar 

  • Flemming BW, Delafontaine MT (2000) Mass physical properties of muddy intertidal sediments: some applications, misapplications and non-applications. Cont Shelf Res 20:1179–1197

    Article  Google Scholar 

  • Gingele FX, Leipe T (2001) Southwestern Baltic Sea—A sink for suspended matter from the North Sea? Geology 29:215–218

    Article  Google Scholar 

  • Henriksson M, Myllyvirta T (2006) Classification of Finnish coastal areas based on the eutrophication risk (in Finnish). Itä-Uudenmaan ja Porvoonjoen vesien—ja ilmansuojeluyhdistys r.y, Porvoo

    Google Scholar 

  • Hille S, Leipe T, Seifert T (2006) Spatial variability of recent sedimentation rates in the eastern Gotland Basin (Baltic Sea). Oceanologia 48:1–21

    Google Scholar 

  • Holstein JM, Hensen C (2010) Microbial mediation of benthic biogenic silica dissolution. Geo-Mar Lett 30(5):477–492. doi:10.1007/s00367-009-0181-3

    Article  Google Scholar 

  • Huckriede H, Meischner D (1996) Origin and environment of manganese-rich sediments within black-shale basins. Geochim Cosmochim Acta 60:1399–1413

    Article  Google Scholar 

  • Jakobsen R, Postma D (1989) Formation and solid solution behaviour of Ca-rhodochrosites in marine muds of the Baltic deeps. Geochim Cosmochim Acta 53:2639–2648

    Article  Google Scholar 

  • Jansen DL, Lundqvist DP, Christiansen C, Lund-Hansen LC, Balstrom T, Leipe T (2003) Deposition of organic matter and particulate nitrogen and phosphorus at the North Sea—Baltic Sea transition—a GIS study. Oceanologia 45:283–303

    Google Scholar 

  • Jonsson P, Carman R (1994) Changes in deposition of organic matter and nutrients in the Baltic Sea during the twentieth century. Mar Pollut Bull 28:417–426

    Article  Google Scholar 

  • Jonsson P, Carman R, Wulff F (1990) Laminated sediments in the Baltic—a tool for evaluating nutrient mass balances. Ambio 19:152–158

    Google Scholar 

  • Kankaanpää H, Vallius H, Sandman O, Niemistö L (1997) Determination of recent sedimentation in the Gulf of Finland using 137Cs. Oceanol Acta 20:823–836

    Google Scholar 

  • Kotilainen A, Vallius H, Ryabchuk D (2007) Seafloor anoxia and modern laminated sediments in coastal basins of the eastern Gulf of Finland, Baltic Sea. In: Vallius H (ed) Holocene sedimentary environment and sediment geochemistry of the eastern Gulf of Finland, Baltic Sea. Geol Surv Finland Spec Pap 45:49–62

  • Laier T, Jensen JB (2007) Shallow gas depth-contour map of the Skagerrak-western Baltic Sea region. Geo-Mar Lett 27(2/4):127–141. doi:10.1007/s00367-007-0066-2

    Article  Google Scholar 

  • Leipe T, Gingele FX (2003) The kaolinite/chlorite clay mineral ratio in surface sediments of the southern Baltic Sea as an indicator for long distance transport of fine-grained material. Baltica 16:31–37

    Google Scholar 

  • Leipe T, Löffler A, Emeis K-C, Jähmlich S, Bahlo R, Ziervogel K (2000) Vertical patterns of suspended matter characteristics along a coastal-basin transect in the western Baltic Sea. Estuarine Coastal Shelf Sci 51:789–804

    Article  Google Scholar 

  • Löffler A, Leipe T, Emeis K-C (2000) The “fluffy layer” in the Pomeranian Bight (western Baltic Sea): geochemistry, mineralogy and environmental aspects. Meyniana 52:85–100

    Google Scholar 

  • Lundqvist DP, Jansen DL, Christiansen C, Jensen A, Balstrøm T, Kunzendorf H (2003) 210Pb based deposition rates in the North Sea—Baltic Sea transition—a summary. Danish J Geogr 103:99–109

    Google Scholar 

  • Mattila J, Kankaanpää H, Ilus E (2006) Estimation of recent sediment accumulation rates in the Baltic Sea using artificial radionuclides 137Cs and 239, 240Pu as time markers. Boreal Environ Res 11:95–107

    Google Scholar 

  • Miltner A, Emeis K-C (2001) Terrestrial organic matter in surface sediments of the Baltic Sea, NW Europe, as determined by CuO oxidation. Geochim Cosmochim Acta 65:1285–1299

    Article  Google Scholar 

  • Miltner A, Emeis K-C, Struck U, Leipe T, Voss M (2005) Terrigenous organic matter in Holocene sediments from the central Baltic Sea, NW Europe. Chem Geol 216:313–328

    Article  Google Scholar 

  • Müller H, von Dobeneck T, Nehmiz W, Hamer K (2010) Near-surface electromagnetic, rock magnetic, and geochemical fingerprinting of submarine freshwater seepage at Eckernförde Bay (SW Baltic Sea). Geo-Mar Lett (in press). doi:10.1007/s00367-010-0220-0

    Article  Google Scholar 

  • Pazdro K, Staniszewski A, Beldowski J (2001) Variations in organic matter bound in fluffy layer suspended matter from the Pomeranian Bay (Baltic Sea). Oceanologia 43:405–420

    Google Scholar 

  • Persson J, Jonsson P (2000) Historical development of laminated sediments—an approach to detect soft sediment ecosystem changes in the Baltic Sea. Mar Pollut Bull 40:122–134

    Article  Google Scholar 

  • Sandberg J, Andersson A, Johansson S, Wikner J (2004) Pelagic food web structure and carbon budget in the northern Baltic Sea: potential importance of terrigenous carbon. Mar Ecol Prog Ser 268:13–29

    Article  Google Scholar 

  • Seifert T, Tauber F, Kayser B (2001) A high resolution spherical grid topography of the Baltic Sea - 2nd edition. Baltic Sea Science Congress, 25–29 November 2001, Stockholm, Poster #147. www.io-warnemuende.de/research/en_iowtopo.html

  • Seiter K, Hensen C, Schröter J, Zabel M (2004) Organic carbon content in surface sediments—defining regional provinces. Deep-Sea Res I 51:2001–2026

    Article  Google Scholar 

  • Seiter K, Hensen C, Zabel M (2010) Coupling of benthic oxygen uptake and silica release: implications for estimating biogenic particle fluxes to the seafloor. Geo-Mar Lett 30(5):493–509. doi:10.1007/s00367-010-0209-8

    Article  Google Scholar 

  • Staniszewski A, Lejman A, Pempkowiak J (2001) Horizontal and vertical distribution of lignin in surface sediments of the Gdansk Basin. Oceanologia 43:421–439

    Google Scholar 

  • Stein R (ed) (1991) Accumulation of organic carbon in marine sediments. Lecture Notes in Earth Sciences, vol 34. Springer, Berlin

    Google Scholar 

  • Stottmeister I (2005) Sedimentologische Beiträge zum Schlickgürtel vor Namibia zwischen 22° und 27° S. Diploma Thesis, Ernst-Moritz-Arndt-University, Greifswald

  • Struck U, Emeis K-C, Voss M, Christiansen C, Kunzendorf H (2000) Records of southern and central Baltic Sea eutrophication in δ13C and δ15N of sedimentary organic matter. Mar Geol 164:157–171

    Article  Google Scholar 

  • Suess E (1979) Mineral phases formed in anoxic sediments by microbial decomposition of organic matter. Geochim Cosmochim Acta 43:339–352

    Article  Google Scholar 

  • Szczepańska T, Uścinowicz Sz (1994) Geochemical atlas of the Southern Baltic, 1:500 000. Państwowy Instytut Geologiczny, Warszawa

    Google Scholar 

  • Vallius H (2006) Permanent seafloor anoxia in coastal basins of the northwestern Gulf of Finland, Baltic Sea. Ambio 35:105–108

    Article  Google Scholar 

  • Virtasalo JJ, Kotilainen AT (2008) Phosphorus forms and reactive iron in lateglacial, postglacial and brackish-water sediments of the Archipelago Sea, northern Baltic Sea. Mar Geol 252:1–12

    Article  Google Scholar 

  • Virtasalo JJ, Kohonen T, Vuorinen I, Huttula T (2005) Sea bottom anoxia in the Archipelago Sea, northern Baltic Sea—implications for phosphorus remineralization at the sediment surface. Mar Geol 224:103–122

    Article  Google Scholar 

  • Voss M, Emeis K-C, Hille S, Neumann T, Dippner JW (2005) Nitrogen cycle of the Baltic Sea from an isotopic perspective. Global Biogeochem Cycles 19, GB3001. doi:10.1029/2004GB002338

  • Wania F, Broman D, Axelman J, Näf C, Agrell C (2001) A multicompartmental, multi-basin fugacity model describing the fate of PCBs in the Baltic Sea. In: Wulff F, Rahm L, Larsson P (eds) A system analysis of the Baltic Sea. Ecological Studies, vol 148. Springer, Berlin, pp 417–447

    Google Scholar 

  • Wiesner MG, Haake B, Wirth H (1990) Organic facies of surface sediments in the North Sea. Org Geochem 15:419–432

    Article  Google Scholar 

  • Yurkovskis A, Wulff F, Rahm L, Andruzaitis A, Rodriguez-Medina M (1993) A nutrient budget of the Gulf of Riga, Baltic Sea. Estuarine Coastal Shelf Sci 37:113–127

    Article  Google Scholar 

  • Ziervogel K, Bohling B (2003) Sedimentological parameters and erosion behaviour of submarine coastal sediments in the south-western Baltic Sea. Geo-Mar Lett 23(1):43–52. doi:10.1007/s00367-003-0123-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Leipe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leipe, T., Tauber, F., Vallius, H. et al. Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Mar Lett 31, 175–188 (2011). https://doi.org/10.1007/s00367-010-0223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-010-0223-x

Keywords

Navigation