Skip to main content

Advertisement

Log in

Theoretical study of hydrogen storage in a truncated tetrahedron hydrocarbon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A hydrocarbon molecule, having a truncated tetrahedron shape with a suitable size for the storage of a hydrogen molecule, is designed using quantum chemical methods. The molecule consists of four benzene rings bridged by six vinylene groups at the 1, 3, and 5 carbon positions of each ring, and has a stoichiometry of C36H24. The molecular geometry optimized under T d symmetry by the B3LYP/cc-pVTZ method shows no imaginary frequencies. The size of the molecular cavity, measured by the distance between opposite vinylene groups, is 8.0 Å. The cavity has four openings along each tetrahedron face. The radius of the opening is approximately 2 Å. The system interacting with a hydrogen molecule is optimized by the MP2/cc-pVTZ method. The interaction energy is evaluated by an extrapolation method through increasing the basis set size of the hydrogen molecule from the cc-pVTZ to the cc-pV6Z with counterpoise corrections. The hydrogen molecule enters the opening by overcoming an energy barrier of +730 meV and locates at the center of the cavity with a binding energy of −140 meV. The high barrier arises from the small size of the opening. The binding energy is three times larger than that of a graphite surface and may allow hydrogen storage at milder temperatures and pressures than those required with graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan, Sect. 3.3 Hydrogen Storage, 2012. http://energy.gov/sites/prod/files/2014/03/f12/storage.pdf, Accessed 12 Sep 2016

  2. K.M. Thomas, Catal. Today 120, 389 (2007)

    Article  Google Scholar 

  3. B. Bogdanović, M. Schwickardi, J. Alloys. Compd. 253–254, 1(1997)

  4. L. Mattera, F. Rosatelli, C. Salvo, F. Tommasini, U. Valbusa, G. Vidali, Surf. Sci 93, 515 (1980)

    Article  ADS  Google Scholar 

  5. P. Bénard, R. Chahine, Langmuir 17, 1950 (2001)

    Article  Google Scholar 

  6. S. Patchkovskii, J.S. Tse, S.N. Yurchenko, L. Zhchkov, T. Heine, G. Seifert, Proc. Nat. Acad. Sci. USA 102, 10439 (2005)

    Article  ADS  Google Scholar 

  7. H. Cheng, A.C. Cooper, G.P. Pez, M.K. Kostov, P. Piotrowski, S.J. Stuart, J. Phys. Chem. B 109, 3780 (2005)

    Article  Google Scholar 

  8. B. Kuchta, L. Firlej, P. Pfeifer, C. Wexler, Carbon 48, 223 (2010)

    Article  Google Scholar 

  9. S. Ishikawa, T. Yamabe, Appl. Phys. A 114, 1339 (2014)

    Article  Google Scholar 

  10. S. Ishikawa, T. Yamabe, Appl. Phys. A 119, 1365 (2015)

    Article  Google Scholar 

  11. J.H. Conway, H. Burgiel, C. Goodman-Strass, The Symmetries of Things, 1st edn. (CRC Press, 2008), pp. 283–353

  12. Gaussian 09, Revision E.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. J.B. Farkas, Foresman, J.V. Ortiz, D.J. J. Cioslowski, Fox. (Gaussian, Inc., Wallingford CT, 2009)

    Google Scholar 

  13. C. Møller, M.S. Plesset, Phys. Rev 46, 618 (1934)

    Article  ADS  Google Scholar 

  14. J.A. Pople, K. Raghavachari, H.B. Schlegel, J.S. Binkley. Int. J. Quantum Chem., Quant. Chem. Symp S13, 225 (1979)

    Google Scholar 

  15. T.H. Dunning Jr, J. Chem. Phys. 90, 1007 (1989)

  16. A.K. Wilson, T. van Mourik, T.H. Dunning Jr., J. Mol, Struct. Theochem 388, 339 (1996)

    Article  Google Scholar 

  17. T.M. Klapötke, A. Schulz, in Quantum Chemical Methods in Main-Group Chemistry (Wiley, Chichester, 1998), pp. 115–118

    Google Scholar 

  18. S.F. Boys, F. Bernardi, Mol. Phys 19, 553 (1970)

    Article  ADS  Google Scholar 

  19. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  20. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  21. A. Bondi, J. Phys. Chem 68, 441 (1964)

    Article  Google Scholar 

  22. O. Hübner, A. Glöss, M. Fichtner, W. Klopper, J. Phys. Chem. A 108, 3019 (2004)

    Article  Google Scholar 

  23. S. Ishikawa, T. Yamabe, Appl. Phys. A 99, 29 (2010)

    Article  Google Scholar 

  24. I.N. Levine, Quantum Chemistry, 4th edn, (Prentice Hall, Englewood Cliffs, 1991), pp. 603

  25. M.W. Feyereisen, D. Feller, A.A. Dixon, J. Phys. Chem 100, 2993 (1996)

    Article  Google Scholar 

  26. S.K. Bhatia, A.L. Myers, Langmuir 22, 1688 (2006)

    Article  Google Scholar 

  27. A.R. Leach, Molecular Modelling: Principles and Applications, 2nd edn, (Pearson Education Ltd., Harlow 2001), pp. 221

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Ishikawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Here, we show the detailed form of the potential function of a hydrogen molecule bound in a carbon sphere of radius d with a circular opening of radius a [9, 10]. The origin of the system is set at the sphere center and the z axis is drawn running through the centers of the sphere and the opening. The potential energy curve of a hydrogen molecule moving along the z axis is given by:

$$W\left( z,d,a \right)=\frac{D}{3}\left\{ \frac{1}{10\left( z/d \right)}\left[ \frac{1}{{{\left[ 1-2\left( z/d \right)\cos {{\theta }_{a}}+{{\left( z/d \right)}^{2}} \right]}^{5}}}-\frac{1}{{{\left[ 1+\left( z/d \right) \right]}^{10}}} \right]{{\left( \frac{{{d}_{e}}}{d} \right)}^{10}}-\frac{5}{8\left( z/d \right)}\left[ \frac{1}{{{\left[ 1-2\left( z/d \right)\cos {{\theta }_{a}}+{{\left( z/d \right)}^{2}} \right]}^{2}}}-\frac{1}{{{\left[ 1+\left( z/d \right) \right]}^{4}}} \right]{{\left( \frac{{{d}_{e}}}{d} \right)}^{4}} \right\},$$
(3)

where θ a , D, and d e denote the polar angle of the opening edge (\({{\theta }_{a}}={{\sin }^{-1}}a/d\)), the potential depth, and the optimum sphere radius, respectively. The lowest energy (−D) is obtained when the hydrogen molecule is located at the center of the sphere (z = 0) if d = d e and a = 0. The D and d e are given by:

$$D=\frac{48}{5}{{\left( \frac{2}{5} \right)}^{2/3}}\pi ~{{\rho }_{\text{s}}}~{{\sigma }_{\text{C}-{{\text{H}}_{2}}}}^{2}~{{\epsilon }_{\text{C}-{{\text{H}}_{2}}}}~$$
(4)
$${{d}_{\text{e}}}={{\left( \frac{5}{2} \right)}^{1/6}}{{\sigma }_{\text{C}-{{\text{H}}_{2}}}},\text{ }\!\!~\!\!\text{ }$$
(5)

where ρ s denotes the density of the carbon surface. The \({{\epsilon }_{\text{C}-{{\text{H}}_{2}}}}\)and \({{\sigma }_{\text{C}-{{\text{H}}_{2}}}}\) are, respectively, the energy and distance parameters of the Lennard–Jones potential between a carbon atom and a hydrogen molecule. The hydrogen scattering experiment from the graphite surface determined their values: \({{\epsilon }_{\text{C}-{{\text{H}}_{2}}}}\)= 3.89 meV and \({{\sigma }_{\text{C}-{{\text{H}}_{2}}}}\)= 2.89 Å [4]. Using the graphite surface density (0.382 Å−2) for ρ s , we obtain D = 203 meV and d e = 3.37 Å.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, S., Yamabe, T. Theoretical study of hydrogen storage in a truncated tetrahedron hydrocarbon. Appl. Phys. A 123, 119 (2017). https://doi.org/10.1007/s00339-016-0726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0726-z

Keywords

Navigation