Skip to main content

Advertisement

Log in

A theoretical deduction of the shape and size of nanocarbons suitable for hydrogen storage

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We evaluated the adsorption energy of a hydrogen molecule in nanocarbons consisting of graphene sheets. The nanocarbon shapes were a pair of disks with separation 2d, a cylinder with radius d, and a truncated sphere with radius d. We obtained the adsorption energy in the form of a 10–4 Lennard–Jones function with respect to 1/d. The values of the potential depth (D) and equilibrium distance (d e), respectively, were 94 meV and 2.89 Å for the disk pair, 158 meV and 3.14 Å for the cylinder, and 203 meV and 3.37 Å for the sphere. When d=d e, the adsorption energy of the disk pair (cylinder) became deeper than −0.9D, and it approached −D when the radius (length) increased to more than twice its separation (radius). The adsorption energy of the sphere was increased from −D to −0.5D when the radius of the opening increased from 0 to d e. These results suggest that porous carbon materials can increase the adsorption energy by up to ∼200 meV if the carbon atoms are arranged on a spherical-like surface with ∼7 Å separation. This may lead to practical hydrogen storage for fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. US Department of Energy, Office of Energy Efficiency and Renewable Energy and The Freedom CAR and Fuel Partnership. Targets for onboard hydrogen storage systems for light-duty vehicles, rev. 4.0, September 2009. http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf

  2. U. Eberle, M. Felderhoff, F. Schüth, Angew. Chem. Int. Ed. 48, 6608 (2009)

    Article  Google Scholar 

  3. M. Shiraishi, T. Takenobu, H. Kataura, M. Ata, Appl. Phys. A 78, 947 (2004)

    Article  ADS  Google Scholar 

  4. B. Panella, M. Hirscher, S. Roth, Carbon 43, 2209 (2005)

    Article  Google Scholar 

  5. R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J. Fischer, S. Kucheyev, Carbon 44, 2489 (2006)

    Article  Google Scholar 

  6. B. Panella, M. Hirscher, B. Ludescher, Microporous Mesoporous Mater. 103, 230 (2007)

    Article  Google Scholar 

  7. K.M. Thomas, Catal. Today 120, 389 (2007)

    Article  Google Scholar 

  8. H. Cheng, A.C. Cooper, G.P. Pez, M.K. Kostov, P. Piotrowski, S.J. Stuart, J. Phys. Chem. B 109, 3780 (2005)

    Article  Google Scholar 

  9. P. Bénard, R. Chahine, Langmuir 17, 1950 (2001)

    Article  Google Scholar 

  10. S.K. Bhatia, A.L. Myers, Langmuir 22, 1688 (2006)

    Article  Google Scholar 

  11. B. Kuchta, L. Firlej, P. Pfeifer, C. Wexler, Carbon 48, 223 (2010)

    Article  Google Scholar 

  12. W.J. Fan, R.Q. Zhang, B.K. Teo, B. Aradi, Th. Frauenheim, Appl. Phys. Lett. 95, 013116 (2009)

    Article  ADS  Google Scholar 

  13. G. Mpourmpakis, G.E. Froudakis, G.P. Lithoxoos, J. Samios, J. Chem. Phys. 126, 144704 (2007)

    Article  ADS  Google Scholar 

  14. I. Cabria, M.J. Lopez, J.A. Alonso, Carbon 45, 2649 (2007)

    Article  Google Scholar 

  15. J.A. Alonso, I. Cabria, M.J. Lopez, J. Mex. Chem. Soc. 56, 261 (2012)

    Google Scholar 

  16. Q. Wang, J.K. Johnson, J. Chem. Phys. 110, 577 (1999)

    Article  ADS  Google Scholar 

  17. P. Kowalczyk, P.A. Gauden, A.P. Terzyk, S.K. Bhatia, Langmuir 23, 3666 (2007)

    Article  Google Scholar 

  18. W.-Q. Deng, X. Xu, W.A. Goddard, Phys. Rev. Lett. 92, 166103 (2004)

    Article  ADS  Google Scholar 

  19. M.T. Knippenberg, S.J. Stuart, A.C. Cooper, G.P. Pez, H. Cheng, J. Phys. Chem. B 110, 22957 (2006)

    Article  Google Scholar 

  20. C.-I. Weng, S.-P. Ju, K.-C. Fang, F.-P. Chang, Comput. Mater. Sci. 40, 300 (2007)

    Article  Google Scholar 

  21. S.S. Han, H.S. Kim, K.S. Han, J.Y. Lee, H.M. Lee, J.K. Kang, S.I. Woo, A.C.T. van Duin, W.A. Goddard, Appl. Phys. Lett. 87, 213113 (2005)

    Article  ADS  Google Scholar 

  22. T. Yamabe, M. Fujii, S. Mori, H. Kinoshita, S. Yata, Synth. Met. 145, 31 (2004)

    Article  Google Scholar 

  23. S. Ishikawa, T. Yamabe, Appl. Phys. A 99, 29 (2010)

    Article  ADS  Google Scholar 

  24. L. Mattera, F. Rosatelli, C. Salvo, F. Tommasini, U. Valbusa, G. Vidali, Surf. Sci. 93, 515 (1980)

    Article  ADS  Google Scholar 

  25. A.J. Stone, The Theory of Intermolecular Forces (Clarendon, Oxford, 2002)

    Google Scholar 

  26. D.Y. Sun, J.W. Liu, X.G. Gong, Z.-F. Liu, Phys. Rev. B 75, 075424 (2007)

    Article  ADS  Google Scholar 

  27. W.A. Steele, The Interaction of Gases with Solid Surfaces (Pergamon, New York, 1974)

    Google Scholar 

  28. T.X. Nguyen, J.-S. Bae, Y. Wang, S.K. Bhatia, Langmuir 25, 4314 (2009)

    Article  Google Scholar 

  29. A.K. Ghatak, S. Lokanathan, Quantum Mechanics: Theory and Applications (Kluwer Academic, Dordrecht, 2004)

    Book  Google Scholar 

  30. H.J.W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral (World Scientific, Singapore, 2012)

    Book  Google Scholar 

  31. Y. Murata, M. Murata, K. Komatsu, J. Org. Chem. 66, 8187 (2001)

    Article  Google Scholar 

  32. Y. Murata, M. Murata, K. Komatsu, J. Am. Chem. Soc. 125, 7152 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, S., Yamabe, T. A theoretical deduction of the shape and size of nanocarbons suitable for hydrogen storage. Appl. Phys. A 114, 1339–1346 (2014). https://doi.org/10.1007/s00339-013-7978-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7978-7

Keywords

Navigation