Skip to main content

Advertisement

Log in

The potential energy curve and Langmuir isotherm of hydrogen adsorption by a truncated carbon sphere

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The potential energy curve for the adsorption of a hydrogen molecule by a truncated hollow sphere consisting of carbon atoms was evaluated by using the Lennard–Jones function for the pair interaction between a carbon atom and a hydrogen molecule. The sphere surface was regarded as a continuum with a uniform density identical to that of a graphite layer. The lower limit of the potential was found to be −200 meV when the sphere had a radius of 3.4 Å and no opening. By increasing the radius of the opening to 2.9 Å, the energy barrier for an incoming molecule disappeared and the lower limit increased to −150 meV, which is three times as deep as that observed for a graphite surface. The Langmuir isotherm for the truncated sphere of this size was evaluated based on the eigenvalues of the potential curve. We found that the pressure yielding a half occupancy was <50 bar at a temperature below 250 K. This indicates that a carbon pore with this shape and size can store a hydrogen molecule under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan, Section 3.3 Hydrogen Storage, 2012 http://energy.gov/sites/prod/files/2014/03/f12/storage.pdf. Accessed 12 Dec 2014

  2. S.K. Bhatia, A.L. Myers, Langmuir 22, 1688 (2006)

    Article  Google Scholar 

  3. L. Mattera, F. Rosatelli, C. Salvo, F. Tommasini, U. Valbusa, G. Vidali, Surf. Sci. 93, 515 (1980)

    Article  ADS  Google Scholar 

  4. P. Bénard, R. Chahine, Langmuir 17, 1950 (2001)

    Article  Google Scholar 

  5. U. Eberle, M. Felderhoff, F. Schüth, Angew. Chem. Int. Ed. 48, 6608 (2009)

    Article  Google Scholar 

  6. S. Patchkovskii, J.S. Tse, S.N. Yurchenko, L. Zhchkov, T. Heine, G. Seifert, Proc. Natl. Acad. Sci. USA 102, 10439 (2005)

    Article  ADS  Google Scholar 

  7. H. Cheng, A.C. Cooper, G.P. Pez, M.K. Kostov, P. Piotrowski, S.J. Stuart, J. Phys. Chem. B 109, 3780 (2005)

    Article  Google Scholar 

  8. B. Kuchta, L. Firlej, P. Pfeifer, C. Wexler, Carbon 48, 223 (2010)

    Article  Google Scholar 

  9. K.M. Thomas, Catal. Today 120, 389 (2007)

    Article  Google Scholar 

  10. W.J. Fan, R.Q. Zhang, B.K. Teo, B. Aradi, Th. Frauenheim, Appl. Phys. Lett. 95, 013116 (2009)

    Article  ADS  Google Scholar 

  11. G. Mpourmpakis, G.E. Froudakis, G.P. Lithoxoos, J. Samios, J. Chem. Phys. 126, 144704 (2007)

    Article  ADS  Google Scholar 

  12. I. Cabria, M.J. Lopez, J.A. Alonso, Carbon 45, 2649 (2007)

    Article  Google Scholar 

  13. J.A. Alonso, I. Cabria, M.J. Lopez, J. Mex. Chem. Soc. 56, 261 (2012)

    Google Scholar 

  14. Q. Wang, J.K. Johnson, J. Chem. Phys. 110, 577 (1999)

    Article  ADS  Google Scholar 

  15. P. Kowalczyk, P.A. Gauden, A.P. Terzyk, S.K. Bhatia, Langmuir 23, 3666 (2007)

    Article  Google Scholar 

  16. W.-Q. Deng, X. Xu, W.A. Goddard, Phys. Rev. Lett. 92, 166103-1 (2004)

    Article  ADS  Google Scholar 

  17. M.T. Knippenberg, S.J. Stuart, A.C. Cooper, G.P. Pez, H. Cheng, J. Phys. Chem. B 110, 22957 (2006)

    Article  Google Scholar 

  18. C.-I. Weng, S.-P. Ju, K.-C. Fang, F.-P. Chang, Comput. Mater. Sci. 40, 300 (2007)

    Article  Google Scholar 

  19. S.S. Han, H.S. Kim, K.S. Han, J.Y. Lee, H.M. Lee, J.K. Kang, S.I. Woo, A.C.T. van Duin, W.A. Goddard, Appl. Phys. Lett. 87, 213113 (2005)

    Article  ADS  Google Scholar 

  20. T. Yamabe, M. Fujii, S. Mori, H. Kinoshita, S. Yata, Synth. Met. 145, 31 (2004)

    Article  Google Scholar 

  21. S. Ishikawa, T. Yamabe, Appl. Phys. A 114, 1339 (2014)

    Article  ADS  Google Scholar 

  22. M. Hirscher, M. Becher, M. Haluska, U. Dettlaff-Weglikowska, A. Quintet, G.S. Duesberg, Y.-M. Choi, P. Downes, M. Hulman, S. Roth, I. Stepanek, P. Bernier, Appl. Phys. A 72, 129 (2001)

    Article  ADS  Google Scholar 

  23. Y. Murata, M. Murata, K. Komatsu, J. Org. Chem. 66, 8187 (2001)

    Article  Google Scholar 

  24. Y. Murata, M. Murata, K. Komatsu, J. Am. Chem. Soc. 125, 7152 (2003)

    Article  Google Scholar 

  25. A.J. Stone, The Theory of Intermolecular Forces, 1st edn. (Clarendon Press, Oxford, 2002)

    Google Scholar 

  26. W.A. Steele, The Interaction of Gases with Solid Surfaces, 1st edn. (Pergamon Press, New York, 1974)

    Google Scholar 

  27. S. Ishikawa, T. Yamabe, Appl. Phys. A 99, 29 (2010)

    Article  ADS  Google Scholar 

  28. R. Kubo, Statistical Mechanics, 2nd edn. (Elsevier, Amsterdam, 2004)

    Google Scholar 

  29. W.P. David, R.M. Ibberson, J.C. Matthwman, K. Prassides, T.J.S. Dennis, J.P. Hare, H.W. Kroto, R. Taylor, D.R.M. Wlaton, Nature 353, 147 (1991)

    Article  ADS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Ishikawa.

Appendix: List of symbols

Appendix: List of symbols

Symbols

Description

\(\epsilon_{{{\text{C}}{\text{-}}{\text{H}}_{2} }}\)

Lennard–Jones potential depth between C and H2

\(\epsilon_{n}\)

The nth eigenvalue of the potential energy curve for the H2 adsorption

θ

Azimuthal angle of the surface of the truncated carbon sphere

θ a

Azimuthal angle of the opening edge on the truncated carbon sphere

θ(pT)

Occupancy of the H2 adsorption site given by the Langmuir isotherm

ρ s

Surface density of the carbon sheet

\(\sigma_{{{\text{C}}{\text{-}}{\text{H}}_{2} }}\)

Lennard–Jones distance parameter between C and H2

a

Opening radius of the truncated carbon sphere

d

Radius of the truncated carbon sphere or the distance between H2 and an infinite single carbon sheet

d e

Equilibrium radius of the closed carbon sphere for the H2 adsorption

d g

Gravimetric H2 density of the substrate

Surface element of the carbon surface

d sg

Equilibrium distance between H2 and an infinite single carbon sheet

d v

Volumetric H2 density of the substrate

D

Potential depth of the H2 adsorption by the closed carbon sphere

\(\overline{{N_{0} }} (T)\)

Lower limit of the number density of the H2 adsorption sites

\(\overline{{N_{\text{site}} }}\)

Number density of the H2 adsorption sites

\(\overline{{N_{{{\text{H}}_{2} }}^{\text{ads}} }} (p, T)\)

Number density of adsorbed H2 molecules in the substrate

\(\overline{{N_{{{\text{H}}_{2} }}^{\text{gas}} }} \left( {p, T} \right)\)

Number density of gaseous H2 molecules

p 0(T)

Half-occupancy pressure of the Langmuir isotherm for the H2 adsorption

\(p_{ \hbox{max} } (T)\)

Pressure at which the substrate has the same H2 density as the gas

r

Distance between C and H2

z

Position of the H2 molecule adsorbed by the truncated carbon sphere

z ads(T)

Molecular partition function of the adsorbed H2 molecule

z gas(T)

Molecular partition function of the gaseous H2 molecule per unit volume

\(V_{\text{LJ}} \left( r \right)\)

Lennard–Jones potential

W

Integral form of the H2 adsorption energy

\(W_{\text{sg}} \left( d \right)\)

H2 adsorption energy by an infinite single carbon sheet

W(zda)

H2 adsorption energy by the truncated carbon sphere

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, S., Yamabe, T. The potential energy curve and Langmuir isotherm of hydrogen adsorption by a truncated carbon sphere. Appl. Phys. A 119, 1365–1372 (2015). https://doi.org/10.1007/s00339-015-9107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9107-2

Keywords

Navigation