Skip to main content

Advertisement

Log in

A theoretical study of hydrogen adsorption on Li, Be, Na, and Mg atoms attached to aromatic hydrocarbons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The binding energy of a hydrogen molecule on metal atoms (Li, Be, Na, and Mg) attached to aromatic hydrocarbon molecules (benzene and anthracene) was calculated using an ab initio molecular orbital method at the MP2(FC)/cc-pVTZ level with basis set superposition error (BSSE) correction. The energy tended to become more negative as the metal atom had a more positive charge and a smaller radius. The energies of Li2C6H6-H2, Li2C14H10-H2, Na2C14H10-H2, and MgC14H10-H2 were −2.7 to −2.2, −4.0 to −3.1, −2.8 to −0.3, and −1.3 kcal/mol, respectively. Most of these energies were more negative than those on the hydrocarbons without metal atoms (ca. −1 kcal/mol). Analyzing the Lennard–Jones type potential with the parameters determined by the MP2 calculations, it was found that these energies mainly consisted of the induction force caused by the positive charge of the metal atom and the dispersion force from the nearest C6-ring. The energy of BeC14H10-H2 was more negative (−8.6 kcal/mol) than of the other complexes. The hydrogen molecule in this complex had a comparatively longer H–H distance and a more positive H2 charge than the others. These data suggest that the hydrogen adsorption on this complex involves a charge transfer process in addition to physisorption interactions. The hydrogen binding energies in some Li2C14H10-H2 systems (∼−4.0 kcal/mol) and BeC14H10-H2 are promising to operate hydrogen storage/release at ambient temperature with moderate pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hydrogen Fuel Cells and Infrastructure Technologies Programs, US Department of Energy (http://www.eere.energy.gov/hydrogenandfuelcells/about.html) (2009)

  2. A.W.C. van den Berg, C.O. Areán, Chem. Commun. 668 (2008)

  3. F.L. Darklim, P. Malbrunot, G.P. Tartaglia, Int. J. Hydrog. Energy 27, 193 (2002)

    Article  Google Scholar 

  4. M. Hirscher, M. Becher, M. Haluska, U. Dettlaff-Weglikowska, A. Quintel, G.S. Duesberg, P. Downes, Y.-M. Choi, M. Hulman, S. Roth, I. Stepanek, P. Bernier, Appl. Phys. A 72, 129 (2001)

    Article  ADS  Google Scholar 

  5. R. Yang, Carbon 38, 623 (2000)

    Article  Google Scholar 

  6. E. Poirier, R. Chahine, P. Bénard, D. Cossement, L. Lafi, E. Mélançon, T.K. Bose, S. Désilets, Appl. Phys. A 78, 961 (2004)

    Article  ADS  Google Scholar 

  7. B. Panella, M. Hirscher, S. Roth, Carbon 43, 2209 (2005)

    Article  Google Scholar 

  8. R. Dash, J. Chmiola, G. Yushin, Y. Gogosti, G. Landisio, J. Singer, J. Fischer, S. Kucheyev, Carbon 44, 2489 (2006)

    Article  Google Scholar 

  9. M. Shiraishi, T. Takenobu, H. Katakura, M. Ata, Appl. Phys. A 78, 947 (2004)

    Article  ADS  Google Scholar 

  10. B. Panella, M. Hirscher, B. Ludesdcher, Microporous Mesoporous Mater. 103, 230 (2007)

    Article  Google Scholar 

  11. L. Mattera, F. Rosatelli, C. Salvo, F. Tommasini, U. Valbusa, G. Vidali, Surf. Sci. 93, 515 (1980)

    Article  ADS  Google Scholar 

  12. G. Vidali, G. Ihm, H.-Y. Kim, M.W. Cole, Surf. Sci. Rep. 12, 133 (1991)

    Article  Google Scholar 

  13. P. Kowalczyk, R. Hołsyt, M. Terrones, H. Terrones, Phys. Chem. Chem. Phys. 9, 1786 (2007)

    Article  Google Scholar 

  14. M. Bonfanti, R. Martinazzo, G.F. Tantardini, A. Ponti, J. Phys. Chem. C 111, 5825 (2007)

    Article  Google Scholar 

  15. S.S. Han, J.K. Kang, H.M. Lee, A.C.T. van Duin, W.A. Goddard III, Appl. Phys. Lett. 86, 203108 (2005)

    Article  ADS  Google Scholar 

  16. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard III, J. Phys. Chem. A 105, 9396 (2001)

    Google Scholar 

  17. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B.04 (Gaussian, Inc., Wallingford, 2004)

    Google Scholar 

  18. C. Möller, M.S. Plesset, Phys. Rev. 46, 618 (1934)

    Article  ADS  Google Scholar 

  19. D.E. Woon, T.H. Dunning Jr, J. Chem. Phys. 98, 1358 (1993)

    Article  ADS  Google Scholar 

  20. S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)

    Article  ADS  Google Scholar 

  21. S. Simon, M. Duran, J.J. Dannenberg, J. Chem. Phys. 105, 11024 (1996)

    Article  ADS  Google Scholar 

  22. A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985)

    Article  ADS  Google Scholar 

  23. N.C. Handy, H.F. Schaefer III, J. Chem. Phys. 81, 5031 (1984)

    Article  ADS  Google Scholar 

  24. F. Tran, J. Weber, T.A. Wesolowski, F. Cheikh, Y. Ellinger, F. Pauzat, J. Phys. Chem. B 106, 8689 (2002)

    Article  Google Scholar 

  25. O. Hübner, A. Glöss, M. Fichtner, W. Klopper, J. Phys. Chem. A 108, 3019 (2004)

    Article  Google Scholar 

  26. H. Krause, B. Ernstberger, H.J. Neusser, Chem. Phys. Lett. 184, 411 (1991)

    Article  ADS  Google Scholar 

  27. J.R. Grover, E.A. Walters, E.T. Hui, J. Chem. Phys. 91, 3233 (1987)

    Article  Google Scholar 

  28. M.O. Sinnokrot, E.F. Valeev, C.D. Sherrill, J. Am. Chem. Soc. 124, 10887 (2002)

    Article  Google Scholar 

  29. M.O. Sinnokrot, C.D. Sherrill, J. Phys. Chem. A 110, 10656 (2006)

    Article  Google Scholar 

  30. T. Janowski, P. Pulay, Chem. Phys. Lett. 447, 27 (2007)

    Article  ADS  Google Scholar 

  31. M.W. Feyereisen, D. Feller, D.A. Dixson, J. Phys. Chem. 100, 2993 (1996)

    Article  Google Scholar 

  32. S. Ishikawa, G. Madjarova, T. Yamabe, J. Phys. Chem. B 105, 11986 (2001)

    Article  Google Scholar 

  33. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1969)

    Article  ADS  Google Scholar 

  34. K.D. Sen, P. Politzer, J. Chem. Phys. 90, 4370 (1989)

    Article  ADS  Google Scholar 

  35. S.R. Bhatia, A.L. Myers, Langmuir 22, 1688 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, S., Yamabe, T. A theoretical study of hydrogen adsorption on Li, Be, Na, and Mg atoms attached to aromatic hydrocarbons. Appl. Phys. A 99, 29–37 (2010). https://doi.org/10.1007/s00339-010-5571-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5571-x

Keywords

Navigation