Skip to main content
Log in

Benchmarking optimization solvers for structural topology optimization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The purpose of this article is to benchmark different optimization solvers when applied to various finite element based structural topology optimization problems. An extensive and representative library of minimum compliance, minimum volume, and mechanism design problem instances for different sizes is developed for this benchmarking. The problems are based on a material interpolation scheme combined with a density filter. Different optimization solvers including Optimality Criteria (OC), the Method of Moving Asymptotes (MMA) and its globally convergent version GCMMA, the interior point solvers in IPOPT and FMINCON, and the sequential quadratic programming method in SNOPT, are benchmarked on the library using performance profiles. Whenever possible the methods are applied to both the nested and the Simultaneous Analysis and Design (SAND) formulations of the problem. The performance profiles conclude that general solvers are as efficient and reliable as classical structural topology optimization solvers. Moreover, the use of the exact Hessians in SAND formulations, generally produce designs with better objective function values. However, with the benchmarked implementations solving SAND formulations consumes more computational time than solving the corresponding nested formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. There are implementations of these methods which do allow equality constraints see e.g. (Zhang et al. 1996; Wang et al. 2011). However, to the best of our knowledge there are no numerical results suggesting that these methods can be used to solve SAND formulation of topology optimization problems.

  2. MMA and GCMMA are considered as first-order methods. IPOPT, SNOPT and FMINCON are considered as second-order methods even though for certain problem formulations, limited memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) is used to approximate the Hessian of the Lagrangian.

  3. A design, which is deemed incorrect by the optimality conditions, can indeed be a capable design and visually describe the correct topology. However, we experience that tight optimality conditions lead to better objective function values.

References

  • Amestoy PR, Duff IS, L’Excellent JY (2000) Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput Methods Appl Mech Eng 184(24):501–520

    Article  MATH  Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16

    Article  MATH  Google Scholar 

  • Arora JS, Wang Q (2005) Review of formulations for structural and mechanical system optimization. Struct Multidiscip Optim 30(4):251–272

    Article  MATH  MathSciNet  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:192–202

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer

  • Benson HY, Shanno DF, Vanderbei RJ (2002) A comparative study of large-scale nonlinear optimization algorithms. Tech. rep., Operations Research and Financial Engineering, Princeton University, ORFE-01-04

  • Boggs PT, Tolle JW (1995) Sequential quadratic programming. Acta Numerica 4:1–51

    Article  MathSciNet  Google Scholar 

  • Bondarenko AS, Bortz DM, Moré JJ (1999) COPS: Large-scale nonlinearly constrained optimization problems. Tech. rep., Mathematics and Computer Science Division, Argonne National Laboratory, Technical Memorandum ANL/MCS-TM-237

  • Bongartz I, Conn AR, Gould N, Toint PL (1995) CUTE: Constrained and unconstrained testing environment. ACM Trans Math Softw 21(1):123–160

    Article  MATH  Google Scholar 

  • Borrvall T, Petersson J (2001) Large-scale topology optimization in 3D using parallel computing. Comput Methods Appl Mech Eng 190(46–47):6201–6229

    Article  MATH  MathSciNet  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384

    Article  MATH  MathSciNet  Google Scholar 

  • Bruns TE (2005) A reevaluation of the SIMP method with filtering and an alternative formulation for solid void topology optimization. Struct Multidiscip Optim 30(6):428–436

    Article  MathSciNet  Google Scholar 

  • Burger M., Stainko R. (2006) Phase-field relaxation of topology optimization with local stress constraints. SIAM J Control Optim 45(4):1447–1466

    Article  MATH  MathSciNet  Google Scholar 

  • Byrd RH, Nocedal J, Waltz RA (2006) KNITRO : an integrated package for nonlinear optimization. In: Large scale nonlinear optimization, vol 83, pp 35–59

  • Conn AR, Gould NIM, Toint PL (1992) Lancelot: a FORTRAN package for large-scale nonlinear optimization (Release A), Springer-Verlag New York, Inc., Secaucus

  • Deepak SR, Dinesh M, Sahu DK, Ananthasuresh GK (2009) A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms. J Mech Robot 1(1)

  • Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91:201–213

    Article  MATH  MathSciNet  Google Scholar 

  • Duff IS, Reid JK (1983) The multifrontal solution of indefinite sparse symmetric linear. ACM Trans Math Softw 9(3):302–325

    Article  MATH  MathSciNet  Google Scholar 

  • Evgrafov A, Rupp CJ, Maute K, Dunn ML (2008) Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidiscip Optim 36(4):329–345

    Article  MATH  MathSciNet  Google Scholar 

  • Fleury C (1989) CONLIN: an efficient dual optimizer based on convex approximation concepts. Struct Optim 1(2):81–89

    Article  Google Scholar 

  • Forsgren A, Gill PE (1998) Primal-dual interior methods for nonconvex nonlinear programming. SIAM J Optim 8(4):1132–1152

    Article  MATH  MathSciNet  Google Scholar 

  • Gill PE, Murray W, Saunders MA (2005) SNOPT: an SQP algorithm for large -scale constrained optimization. SIAM J Optim 47(4):99–131

    Article  MATH  MathSciNet  Google Scholar 

  • Gould NIM, Orban D, Toint PL (2003) CUTEr and SifDec: a constrained and unconstrained testing environment, revisited. ACM Trans Math Softw 29(4):373–394

    Article  MATH  MathSciNet  Google Scholar 

  • Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1–2):1–12

    Article  Google Scholar 

  • Herskovits J (1998) A feasible directions interior-point technique for nonlinear optimization. J Optim Theory Appl 99(1):121–146

    Article  MATH  MathSciNet  Google Scholar 

  • Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi material optimization. Struct Multidiscip Optim 43(6):811–825

    Article  MATH  Google Scholar 

  • Koch T, Achterberg T, Andersen E, Bastert O, Berthold T, Bixby RE, Danna E, Gamrath G, Gleixner AM, Heinz S, Lodi A, Mittelmann H, Ralphs T, Salvagnin D, Steffy DE, Wolter K (2011) MIPLIB 2010. Math Program Comput 3(2):103–163

    Article  MathSciNet  Google Scholar 

  • Kočvara M, Stingl M (2003) PENNON: A code for convex nonlinear and semidefinite programming. Optimization Methods and Software 18(3):317–333

    Article  MATH  MathSciNet  Google Scholar 

  • Lau G.K., Du H., Lim MK (2001) Use of functional specifications as objective functions in topological optimization of compliant mechanism. Comput Methods Appl Mech Eng 190(34):4421–4433

    Article  Google Scholar 

  • Leyffer S., Mahajan A. (2010) Software for Nonlinearly Constrained Optimization. Tech. rep., Mathematics and Computer Science Division, Argonne National Laboratory, Technical Report ANS/MCS-P1768-0610

  • Luenberger DG, Ye Y (2008) Linear and nonlinear programming. Springer

  • Mathworks I (2013) Optimization toolbox user’s guide R 2013 b

  • Murtagh BA, Saunders MA (1998) MINOS 5.5 User’s Guide. Tech. rep., Stanford University Systems Optimization Laboratory, Department of Operations Research, Technical report SOL 83–20R

  • Nocedal J, Wächter R, Waltz RA (2009) Adaptive barrier update strategies for nonlinear interior methods. SIAM J Optim 19(4):1674–1693

    Article  MATH  Google Scholar 

  • Rietz A (2001) Sufficiency of a finite exponent in SIMP (power law) methods. Struct Multidiscip Optim 21(2):159–163

    Article  Google Scholar 

  • Rozvany GIN, Zhou M (1991) The COC algorithm, part I: cross-section optimization or sizing. Comput Methods Appl Mech Eng 89(13):281–308

    Article  Google Scholar 

  • Saxena A., Ananthasuresh GK (2001) Topology synthesis of compliant mechanisms for nonlinear force-deflection and curved path specifications. J Mech Des 123(1):33–42

    Article  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. J Struct Mech 25(4):492–526

    Google Scholar 

  • Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica 25:227–239

    Article  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1–28

    Article  MathSciNet  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MATH  MathSciNet  Google Scholar 

  • Vanderbei RJ (2006) LOQO user’s manual. Version 4.05. Tech. rep., Operations Research and Financial Engineering Princeton University

  • Wächter A, Biegler LT (2006) On the implementation of an interior point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57

    Article  MATH  MathSciNet  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Wang H, Ni Q, Liu H (2011) A new method of moving asymptotes for large-scale linearly equality-constrained minimization. Acta Mathematicae Applicatae Sinica, English Series 27(2):317–328

    Article  MATH  MathSciNet  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MATH  Google Scholar 

  • Wang S, Sturler E, Paulino GH (2007) Large scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 69:2441–2468

    Article  MATH  Google Scholar 

  • Zhang WH, Fleury C, Duysinx P, Nguyen VH, Laschet I (1996) A generalized method of moving asymptotes (GMMA) including equality constraints. Struct Optim 12(2–3):143–146

    Article  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

  • Zillober C (1993) A globally convergent version of the method of moving asymptotes. Structural Optimization 6(3):166–174

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Krister Svanberg at KTH in Stockholm for providing the implementations of both MMA and GCMMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Rojas-Labanda.

Additional information

This research is funded by the Villum Foundation through the research project Topology Optimization – the Next Generation (NextTop).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Labanda, S., Stolpe, M. Benchmarking optimization solvers for structural topology optimization. Struct Multidisc Optim 52, 527–547 (2015). https://doi.org/10.1007/s00158-015-1250-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1250-z

Keywords

Navigation