Skip to main content
Log in

A reevaluation of the SIMP method with filtering and an alternative formulation for solid–void topology optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The most popular way to introduce the notion of topology into the structural analysis of the topology optimization problem is through the Solid Isotropic Material with Penalization (SIMP) method. The fundamental principle behind its use requires a density design variable dependent material constitutive law that penalizes intermediate density material in combination with an active volume constraint. Here, the SIMP method with filtering is reevaluated, and an alternative topology optimization problem formulation, called the SINH (pronounced “cinch”) method, is developed that exploits this principle. The main advantages of the SINH method are that the optimization problem is consistently defined, the topology description is unambiguous, and the method leads to predominantly solid–void designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bathe K-J (1996) Finite element procedures. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolations in topology optimization. Arch Appl Mech 69:635–654

    Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Borrvall T (2001) Topology optimization of elastic continua using restriction. Arch Comput Methods Eng 8(4):351–385

    Article  MATH  MathSciNet  Google Scholar 

  • Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190:4911–4928

    MathSciNet  MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of nonlinear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430

    Article  MATH  Google Scholar 

  • Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscipl Optim 19:93–104

    Google Scholar 

  • Cardoso EL, Fonseca JSO (2003) Complexity control in the topology optimization of continuum structures. J Braz Soc Mech Sci Eng XXV(3):293–301

    Google Scholar 

  • Guedes JM, Taylor JE (1997) On the prediction of material properties and topology for optimal continuum structures. Struct Optim 14:193–199

    Article  Google Scholar 

  • Guo X, Gu YX (2004) A new density-stiffness interpolation scheme for topology optimization of continuum structures. Eng Comput, 21(1):9–22

    MATH  Google Scholar 

  • Haber RB, Jog CS, Bendsøe MP (1996) New approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1–2):1–12

    Google Scholar 

  • Hansen LV (2005) Topology optimization of free vibrations of fiber laser packages. Struct Multidiscipl Optim 29(5):341–348

    Google Scholar 

  • CS Jog (2001) ArticleTitleA robust dual algorithm for topology design of structures in discrete variables Int J Numer Methods Eng 50 IssueID7 1607–1618 Occurrence Handle10.1002/nme.88 Occurrence Handle1006.74076 Occurrence Handle1907920

    Article  MATH  MathSciNet  Google Scholar 

  • CS Jog (2002) ArticleTitleTopology design of structures using a dual algorithm and a constraint on the perimeter Int J Numer Methods Eng 54 IssueID7 1007–1019 Occurrence Handle10.1002/nme.457 Occurrence Handle1098.74659 Occurrence Handle1907920

    Article  MATH  MathSciNet  Google Scholar 

  • Martínez JM (2005) A note on the theoretical convergence properties of the SIMP method. Struct Multidiscipl Optim 29(4):319–323

    Google Scholar 

  • Pedersen NL (2002) Topology optimization of laminated plates with prestress. Comput Struct 80(7–8):559–570

    Google Scholar 

  • Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50(12):2683–2705

    Article  MATH  Google Scholar 

  • Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41(8):1417–1434

    Article  MathSciNet  MATH  Google Scholar 

  • Poulsen T (2003) A new scheme for imposing a minimum length scale in topology optimization. Int J Numer Methods Eng 57(6):741–760

    Article  MATH  MathSciNet  Google Scholar 

  • Rietz A (2001) Sufficiency of a finite exponent in SIMP (power law) methods. Struct Multidiscipl Optim 21:159–163

    Google Scholar 

  • Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscipl Optim 21:90–108

    Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254

    Google Scholar 

  • Rozvany GIN, Zhou M, Sigmund O (1994) Optimization of topology. In: Adeli H (ed) Advances in design optimization. Chapman & Hall, London

    Google Scholar 

  • Sigmund O (1994) Design of material structures using topology optimization. Ph.D. thesis, Technical University of Denmark

  • Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20:351–368

    Article  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

    MathSciNet  Google Scholar 

  • O Sigmund J Petersson (1998) ArticleTitleNumerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima Struct Optim 16 68–75 Occurrence Handle10.1007/BF01214002

    Article  Google Scholar 

  • Stolpe M, Svanberg K (2001a) On the trajectories of penalization methods for topology optimization. Struct Multidiscipl Optim 21:128–139

    Google Scholar 

  • Stolpe M, Svanberg K (2001b) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscipl Optim 22:116–124

    Google Scholar 

  • Svanberg K (1987) Method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm. Part II. Topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336

    Article  Google Scholar 

  • Zhou M, Shyy YK, Thomas HL (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidiscipl Optim 21:152–158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.E. Bruns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruns, T. A reevaluation of the SIMP method with filtering and an alternative formulation for solid–void topology optimization. Struct Multidisc Optim 30, 428–436 (2005). https://doi.org/10.1007/s00158-005-0537-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-005-0537-x

Keywords

Navigation