Skip to main content
Log in

Large-scale parallel topology optimization using a dual-primal substructuring solver

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Parallel computing is an integral part of many scientific disciplines. In this paper, we discuss issues and difficulties arising when a state-of-the-art parallel linear solver is applied to topology optimization problems. Within the topology optimization framework, we cannot readjust domain decomposition to align with material decomposition, which leads to the deterioration of performance of the substructuring solver. We illustrate the difficulties with detailed condition number estimates and numerical studies. We also report the practical performances of finite element tearing and interconnection/dual–primal solver for topology optimization problems and our attempts to improve it by applying additional scaling and/or preconditioning strategies. The performance of the method is finally illustrated with large-scale topology optimization problems coming from different optimal design fields: compliance minimization, design of compliant mechanisms, and design of elastic surface wave-guides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu U, Chopra AK (2003) Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite element implementation. Comput Methods Appl Mech Eng 192(11–12):1337–1375

    Article  MATH  Google Scholar 

  • Bendsøe MP (2006) Multidisciplinary topology optimization. In: Proc. 11th AIAA/ISSMO Symposium on Multidiciplinary Analysis and Optimization

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin

    Google Scholar 

  • Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190(37–38):4911–4928

    Article  MATH  MathSciNet  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Bramble JH, Pasciak JE, Schatz AH (1986) The construction of preconditioners for elliptic problems by substructuring. I. Math Comp 47(175):103–134

    Article  MATH  MathSciNet  Google Scholar 

  • Dohrmann CR (2003) A study of two domain decomposition preconditioners. Tech. Rep. SAND2003-4391, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550

  • Duysinx P, Bruyneel M (2002) Recent progress in preliminary design of mechanical components with topology optimisation. In: Chedmail P, Cognet G, Fortin C, Mascle C, Pegna J (eds) Book of selected papers presented at 3rd Conference on Integrated Design and Manufacturing in Mechanical Engineering IDMME2000/Forum 2000 of SCGM/CSME, Kluwer Publ.

  • Evgrafov A, Pingen G, Maute K (2006) Topology optimization of fluid problems by the lattice Boltzmann method. In: Bendsøe MP, Olhoff N, Sigmund O (eds) IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials: Status and Perspectives. Springer, Netherlands, pp 559–568

    Chapter  Google Scholar 

  • Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D (2001) FETI-DP: a dual–primal unified FETI method—part I: a faster alternative to the two-level FETI method. Int J Numer Methods Eng 50(7):1523–1544

    Article  MATH  MathSciNet  Google Scholar 

  • Farhat C, Li J, Avery P (2005) A FETI-DP method for the parallel iterative solution of indefinite and complex-valued solid and shell vibration problems. International Journal for Numerical Methods in Engineering 63(3):398–427

    Article  MATH  MathSciNet  Google Scholar 

  • Kim TS, Kim JE, Kim YY (2004) Parallelized structural topology optimization for eigenvalue problems. Int J Solids Struct 41:2623–2641

    Article  MATH  Google Scholar 

  • Klawonn A, Widlund OB, Dryja M (2002) Dual–primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J Numer Anal 40(1):159–179 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  • Lee FH, Phoon K, Lim K, Chan S (2002) Performance of Jacobi preconditioning in Krylov subspace solution of finite element equations. Int J Numer Anal Meth Geomechm 26:341–372

    Article  MATH  Google Scholar 

  • Li J, Widlund OB (2006) FETI-DP, BDDC, and block Cholesky methods. Int J Numer Methods Eng 66(2):250–271

    Article  MATH  MathSciNet  Google Scholar 

  • Mahdavi A, Balaji R, Frecker M, Mockensturm E (2006) Topology optimization of 2d continua for minimum compliance using parallel computing. Struct Multidisc Optim 32(2):121–132

    Article  Google Scholar 

  • Mandel J, Tezaur R (2001) On the convergence of a dual-primal substructuring method. Numer Math 88(3):543–558

    Article  MATH  MathSciNet  Google Scholar 

  • Mandel J, Dohrmann CR, Tezaur R (2005) An algebraic theory for primal and dual substructuring methods by constraints. Appl Numer Math 54(2):167–193

    Article  MATH  MathSciNet  Google Scholar 

  • O’Neal D, Murgie S (2001) ANSYS benchmarking project: evaluation of the distributed domain solver. Tech. Rep., ANSYS, Inc., Pittsburgh, PA, USA

    Google Scholar 

  • Pajot JM (2006) Topology optimization of geometrically nonlinear structures including thermo-mechanical coupling. PhD thesis, University of Colorado at Boulder

  • Petersson J (1999) A finite element analysis of optimal variable thickness sheets. SIAM J Numer Anal 36(6):1759–1778

    Article  MATH  MathSciNet  Google Scholar 

  • Rockafellar RT, Wets RJB (1998) Variational analysis. Springer, Berlin

    MATH  Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254

    Article  Google Scholar 

  • Rupp CJ, Evgrafov A, Maute K, Dunn ML (2006) Design of phononic materials/structures for surface wave devices using topology optimization. Struct Multidisc Optim Online, doi:10.1007/s00158-006-0076-0

  • Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA

    MATH  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Struct Multidisc Optim (2):120–127

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidisc Optim 16(1):68–75

    Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MATH  MathSciNet  Google Scholar 

  • Vemaganti K, Lawrence EW (2005) Parallel methods for optimality criteria-based topology optimization. Comp Methods Appl Mech Eng 194:3637–3667

    Article  MATH  MathSciNet  Google Scholar 

  • Wang S, de Sturler E, Paulino GH (2007) Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 69(12):2441–2468

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Evgrafov.

Additional information

The authors acknowledge the support of the Air Force Office of Scientific Research (AFOSR) under grant FA9550-05-1-0046. The computational facility was obtained under the grant AFOSR-DURIP FA9550-05-1-0291.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evgrafov, A., Rupp, C.J., Maute, K. et al. Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidisc Optim 36, 329–345 (2008). https://doi.org/10.1007/s00158-007-0190-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-007-0190-7

Keywords

Navigation